A111283 Number of permutations avoiding the patterns {4321, 45132, 45231, 35412, 53412, 45213, 43512, 45312, 456123, 451623, 356124}; number of strong sorting class based on 4321.
1, 1, 2, 6, 23, 96, 409, 1751, 7505, 32176, 137956, 591501, 2536132, 10873981, 46623553, 199904321, 857114814, 3674987126, 15756967635, 67559972476, 289671844661, 1242004318751, 5325249092137, 22832672531956, 97897943538708
Offset: 0
Keywords
Links
- M. Albert, R. Aldred, M. Atkinson, C Handley, D. Holton, D. McCaughan and H. van Ditmarsch, Sorting Classes, Elec. J. of Comb., Vol. 12 (2005), R31.
- Index entries for linear recurrences with constant coefficients, signature (5,-3,0,-1).
Programs
-
Mathematica
a[1] = 1; a[2] = 2; a[3] = 6; a[n_] := a[n] = 4a[n - 1] + a[n - 2] + a[n - 3] - 4; Table[a[n], {n, 24}] (* Robert G. Wilson v, Nov 04 2005 *) LinearRecurrence[{5,-3,0,-1},{1,2,6,23},30] (* Harvey P. Dale, Jan 01 2017 *)
Formula
a(n) = 4*a(n-1) + a(n-2) + a(n-3) - 4; n>=4.
G.f.: 1+x*(1-3*x-x^2-x^3)/((1-x)*(1-4*x-x^2-x^3)). - Colin Barker, Jan 16 2012
a(n) = 5*a(n-1) - 3*a(n-2) - a(n-4). - Wesley Ivan Hurt, Aug 04 2025
Extensions
More terms from Robert G. Wilson v, Nov 04 2005
a(0)=1 prepended by Alois P. Heinz, Mar 12 2024