cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111373 A generalized Pascal triangle.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 3, 0, 0, 1, 3, 0, 0, 4, 0, 0, 1, 0, 7, 0, 0, 5, 0, 0, 1, 0, 0, 12, 0, 0, 6, 0, 0, 1, 12, 0, 0, 18, 0, 0, 7, 0, 0, 1, 0, 30, 0, 0, 25, 0, 0, 8, 0, 0, 1, 0, 0, 55, 0, 0, 33, 0, 0, 9, 0, 0, 1, 55, 0, 0, 88, 0, 0, 42, 0, 0, 10, 0, 0, 1, 0, 143, 0, 0, 130, 0, 0, 52, 0, 0, 11, 0, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2005

Keywords

Comments

First diagonal is A000012, the all 1's sequence. Second nonzero diagonal is A000027 = n. Third nonzero diagonal is A027379 = n*(n+5)/2 for n>=1, or essentially A000217(n) - 3. Fourth nonzero diagonal is A111396. - Jonathan Vos Post, Nov 10 2005
Row sums are A126042. - Paul Barry, Dec 16 2006

Examples

			Triangle begins:
   1;
   0,  1;
   0,  0,  1;
   1,  0,  0,  1;
   0,  2,  0,  0,  1;
   0,  0,  3,  0,  0,  1;
   3,  0,  0,  4,  0,  0,  1;
   0,  7,  0,  0,  5,  0,  0,  1;
   0,  0, 12,  0,  0,  6,  0,  0,  1;
  12,  0,  0, 18,  0,  0,  7,  0,  0,  1;
   0, 30,  0,  0, 25,  0,  0,  8,  0,  0,  1;
   0,  0, 55,  0,  0, 33,  0,  0,  9,  0,  0,  1;
  55,  0,  0, 88,  0,  0, 42,  0,  0, 10,  0,  0,  1;
Production matrix is
  0, 1;
  0, 0, 1;
  1, 0, 0, 1;
  0, 1, 0, 0, 1;
  0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 1, 0, 0, 1;
		

Crossrefs

First column is A001764. Bears same relation to A001764 as A053121 does to A000108.

Programs

  • Magma
    function A111373(n,k)
      if k eq n then return 1;
      elif ((n-k) mod 3) eq 0 then return (3/(n-k))*Binomial(n, Floor((n-k-3)/3))*(k+1);
      else return 0;
      end if; return A111373;
    end function;
    [A111373(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 30 2022
    
  • Mathematica
    T[n_, k_]= If[k==n, 1, If[Mod[n-k, 3]==0, (3/(n-k))*Binomial[n, (n-k)/3 -1]*(k + 1), 0]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 30 2022 *)
  • SageMath
    def A111373(n,k):
        if(k==n): return 1
        elif ((n-k)%3==0): return (3/(n-k))*binomial(n, (n-k)/3 -1)*(k+1)
        else: return 0
    flatten([[A111373(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 30 2022

Formula

Each term is the sum of the two terms above it to the left and two steps to the right.
From Paul Barry, Dec 16 2006: (Start)
Riordan array (g(x^3),x*g(x^3)) where g(x)=(2/sqrt(3x))*sin(asin(sqrt(27x/4))/3), the g.f. of A001764;
Number triangle T(n,k) = C(3*floor((n+2k)/3)-2k,floor((n+2k)/3)-k)*(k+1)/(2*floor((n+2k)/3)-k+ 1)(2*cos(2*pi*(n-k)/3)+1)/3. (End)
Inverse of Riordan array (1/(1+x^3), x/(1+x^3)), A126030. - Paul Barry, Dec 16 2006
G.f. (x*A(x))^k=sum{n>=k, T(n,k)*x^n}, where A(x)=1+x^3*A(x)^3. - Vladimir Kruchinin, Feb 18 2011
From G. C. Greubel, Jul 30 2022: (Start)
T(n, k) = (3/(n-k))*binomial(n, (n-k)/3 -1)*(k+1) for ( (n-k) mod 3 ) = 0, otherwise 0, with T(n, n) = 1.
T(n, n-3) = A000027(n-2), n >= 3.
T(n, n-6) = A027379(n-5), n >= 6.
T(n, n-9) = A111396(n-8), n >= 9.
T(n, n-12) = A167543(n+5), n >= 12.
Sum_{k=0..n} T(n, k) = A126042(n). (End)

Extensions

More terms from Kerri Sullivan (ksulliva(AT)ashland.edu), Jan 23 2006