cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A111396 a(n) = n*(n+7)*(n+8)/6.

Original entry on oeis.org

0, 12, 30, 55, 88, 130, 182, 245, 320, 408, 510, 627, 760, 910, 1078, 1265, 1472, 1700, 1950, 2223, 2520, 2842, 3190, 3565, 3968, 4400, 4862, 5355, 5880, 6438, 7030, 7657, 8320, 9020, 9758, 10535, 11352, 12210, 13110, 14053, 15040, 16072, 17150, 18275, 19448
Offset: 0

Views

Author

N. J. A. Sloane, Nov 11 2005

Keywords

Crossrefs

Cf. A111373.

Programs

  • Magma
    I:=[0, 12, 30, 55]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 27 2012
    
  • Mathematica
    Table[n(n+7)(n+8)/6, {n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)
    CoefficientList[Series[x*(12-18*x+7*x^2)/(x-1)^4,{x,0,50}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{0,12,30,55},40] (* Vincenzo Librandi, Jun 27 2012 *)
  • PARI
    a(n)=n*(n+7)*(n+8)/6 \\ Charles R Greathouse IV, Oct 16 2015
    
  • SageMath
    [n*(n+7)*(n+8)/6 for n in (0..50)] # G. C. Greubel, Jul 30 2022

Formula

a(n) = binomial(n+8,3) - 2*binomial(n+8,2). - Zerinvary Lajos, Nov 25 2006, corrected by R. J. Mathar, Mar 15 2011
G.f.: x*(12 - 18*x + 7*x^2) /(x-1)^4. - R. J. Mathar, Mar 15 2011
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Jun 27 2012
E.g.f.: (x/6)*(72 + 18*x + x^2)*exp(x). - G. C. Greubel, Jul 30 2022
From Amiram Eldar, Jul 30 2024: (Start)
Sum_{n>=1} 1/a(n) = 1443/7840.
Sum_{n>=1} (-1)^(n+1)/a(n) = 12*log(2)/7 - 1767/1568. (End)

A126042 Expansion of f(x^3)/(1-x*f(x^3)), where f(x) is the g.f. of A001764, whose n-th term is binomial(3n,n)/(2n+1).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 8, 13, 19, 38, 64, 98, 196, 337, 531, 1062, 1851, 2974, 5948, 10468, 17060, 34120, 60488, 99658, 199316, 355369, 590563, 1181126, 2115577, 3540464, 7080928, 12731141, 21430267, 42860534, 77306428, 130771376, 261542752, 473018396, 803538100
Offset: 0

Views

Author

Paul Barry, Dec 16 2006

Keywords

Comments

Row sums of number triangle A111373.
Interleaves T(3n,2n), T(3n+1,2n+1) and T(3n+2,2n+2) for T(n,k) = A047089(n,k).
One step forward and two steps back: number of nonnegative walks of n steps where the steps are size 1 forwards and size 2 backwards. - David Scambler, Mar 15 2011
Brown's criterion ensures that the sequence is complete (see formulae). - Vladimir M. Zarubin, Aug 05 2019
Number of ordered trees with n+1 edges, having nonroot nodes of outdegree 0 or 3. - Emanuele Munarini, Jun 20 2024

Crossrefs

Programs

  • Magma
    [n lt 3 select 1 else Binomial(n, Floor(n/3)) - (&+[Binomial(n,j): j in [0..Floor(n/3)-1]]): n in [0..40]]; // G. C. Greubel, Jul 30 2022
    
  • Maple
    a:= proc(n) option remember; `if`(n<4, [1$3, 2][n+1], (a(n-1)*
           2*(20*n^4-14*n^3-31*n^2-n+8)-6*(3*n-1)*(5*n-6)*a(n-2)
          +9*(n-2)*(15*n^3-48*n^2+15*n+14)*a(n-3)-54*(n-2)*(n-3)*
          (5*n^2-n-2)*a(n-4))/(2*(2*n+1)*(n+1)*(5*n^2-11*n+4)))
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Sep 07 2022
  • Mathematica
    Table[Binomial[n, Floor[n/3]] -Sum[Binomial[n,i], {i,0,Floor[n/3] -1}], {n,0,40}] (* David Callan, Oct 26 2017 *)
    a[n_] := Binomial[n, Floor[n/3]] (1 + Hypergeometric2F1[1, -n + Floor[n/3], 1 + Floor[n/3], -1]) - 2^n; Table[a[n], {n, 0, 38}] (* Peter Luschny, Jun 20 2024 *)
  • PARI
    {a(n)=polcoeff((1/x)*serreverse(x*(1+x)^2/((1+x)^3+x^3+x*O(x^n))),n)}
    
  • PARI
    n=30;
    {a0=1;a1=1;a2=1;for(k=1, n/3,print1(a0,", ",a1,", ",a2,", ");
    a0=2*a2;a1=2*a0-binomial(3*k,k)/(2*k+1);a2=2*a1-binomial(3*k+1,k)/(k+1))
    } \\ Vladimir M. Zarubin, Aug 05 2019
    
  • SageMath
    [binomial(n, (n//3)) - sum(binomial(n,j) for j in (0..(n//3)-1)) for n in (0..40)] # G. C. Greubel, Jul 30 2022

Formula

a(n) = Sum_{k=0..n} binomial(3*floor((n+2k)/3) - 2k, floor((n+2k)/3)-k)*(k+1)/(2*floor((n+2k)/3) - k + 1)(2*cos(2*Pi*(n-k)/3) + 1)/3.
G.f.: (1/x)*Series_Reversion( x*(1+x)^2/((1+x)^3+x^3) ). - Paul D. Hanna, Mar 15 2011
From Vladimir M. Zarubin, Aug 05 2019: (Start)
a(0) = 1, a(1) = 1, a(2) = 1 and for k>0
a(3*k) = 2*a(3*k-1),
a(3*k+1) = 2*a(3*k) - binomial(3*k,k)/(2*k+1),
a(3*k+2) = 2*a(3*k+1) - binomial(3*k+1,k)/(k+1),
where binomial(3*k,k)/(2*k+1) = A001764(k)
and binomial(3*k+1,k)/(k+1) = A006013(k). (End)
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (n-3*k+1) * binomial(n+1,k). - Seiichi Manyama, Jan 27 2024

A167543 a(n) = (n-5)*(n-6)*(n-7)*(n-16)/24.

Original entry on oeis.org

-2, -7, -15, -25, -35, -42, -42, -30, 0, 55, 143, 273, 455, 700, 1020, 1428, 1938, 2565, 3325, 4235, 5313, 6578, 8050, 9750, 11700, 13923, 16443, 19285, 22475, 26040, 30008, 34408, 39270, 44625, 50505, 56943, 63973, 71630, 79950, 88970, 98728, 109263, 120615
Offset: 8

Views

Author

Jamel Ghanouchi, Nov 06 2009

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n-5,3)*(n-16)/4: n in [8..60]]; // G. C. Greubel, Jul 30 2022
    
  • Mathematica
    Table[(n-5)*(n-6)*(n-7)*(n-16)/24, {n,8,60}] (* G. C. Greubel, Jun 15 2016 *)
  • SageMath
    [binomial(n-5,3)*(n-16)/4 for n in (8..60)] # G. C. Greubel, Jul 30 2022

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x^8*(-2+3*x)/(1-x)^5.
E.g.f.: (1/24)*( -3360 - 1800*x - 420*x^2 - 52*x^3 - 3*x^4 + (3360 - 1560*x + 300*x^2 - 28*x^3 + x^4)*exp(x) ). - G. C. Greubel, Jul 30 2022

Extensions

Definition simplified, sequence extended by R. J. Mathar, Nov 12 2009

A126030 Riordan array (1/(1+x^3),x/(1+x^3)).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, -1, 0, 0, 1, 0, -2, 0, 0, 1, 0, 0, -3, 0, 0, 1, 1, 0, 0, -4, 0, 0, 1, 0, 3, 0, 0, -5, 0, 0, 1, 0, 0, 6, 0, 0, -6, 0, 0, 1, -1, 0, 0, 10, 0, 0, -7, 0, 0, 1, 0, -4, 0, 0, 15, 0, 0
Offset: 0

Views

Author

Paul Barry, Dec 15 2006

Keywords

Comments

Inverse is A111373. Row sums are A050935(n+2). Diagonal sums are an alternating sign version of A000931(n+3) with g.f. 1/(1-x^2+x^3).

Examples

			Triangle begins
.1,
.0, 1,
.0, 0, 1,
.-1, 0, 0, 1,
.0, -2, 0, 0, 1,
.0, 0, -3, 0, 0, 1,
.1, 0, 0, -4, 0, 0, 1,
.0, 3, 0, 0, -5, 0, 0, 1,
.0, 0, 6, 0, 0, -6, 0, 0, 1,
.-1, 0, 0, 10, 0, 0, -7, 0, 0, 1,
.0, -4, 0, 0, 15, 0, 0, -8, 0, 0, 1
		

Formula

Number triangle T(n,k)=C(k+(n-k)/3,(n-k)/3)*(-1)^(n-k)*(2*cos(2*pi*(n-k)/3)+1)/3
Showing 1-4 of 4 results.