A111396
a(n) = n*(n+7)*(n+8)/6.
Original entry on oeis.org
0, 12, 30, 55, 88, 130, 182, 245, 320, 408, 510, 627, 760, 910, 1078, 1265, 1472, 1700, 1950, 2223, 2520, 2842, 3190, 3565, 3968, 4400, 4862, 5355, 5880, 6438, 7030, 7657, 8320, 9020, 9758, 10535, 11352, 12210, 13110, 14053, 15040, 16072, 17150, 18275, 19448
Offset: 0
-
I:=[0, 12, 30, 55]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 27 2012
-
Table[n(n+7)(n+8)/6, {n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)
CoefficientList[Series[x*(12-18*x+7*x^2)/(x-1)^4,{x,0,50}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{0,12,30,55},40] (* Vincenzo Librandi, Jun 27 2012 *)
-
a(n)=n*(n+7)*(n+8)/6 \\ Charles R Greathouse IV, Oct 16 2015
-
[n*(n+7)*(n+8)/6 for n in (0..50)] # G. C. Greubel, Jul 30 2022
A126042
Expansion of f(x^3)/(1-x*f(x^3)), where f(x) is the g.f. of A001764, whose n-th term is binomial(3n,n)/(2n+1).
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 8, 13, 19, 38, 64, 98, 196, 337, 531, 1062, 1851, 2974, 5948, 10468, 17060, 34120, 60488, 99658, 199316, 355369, 590563, 1181126, 2115577, 3540464, 7080928, 12731141, 21430267, 42860534, 77306428, 130771376, 261542752, 473018396, 803538100
Offset: 0
-
[n lt 3 select 1 else Binomial(n, Floor(n/3)) - (&+[Binomial(n,j): j in [0..Floor(n/3)-1]]): n in [0..40]]; // G. C. Greubel, Jul 30 2022
-
a:= proc(n) option remember; `if`(n<4, [1$3, 2][n+1], (a(n-1)*
2*(20*n^4-14*n^3-31*n^2-n+8)-6*(3*n-1)*(5*n-6)*a(n-2)
+9*(n-2)*(15*n^3-48*n^2+15*n+14)*a(n-3)-54*(n-2)*(n-3)*
(5*n^2-n-2)*a(n-4))/(2*(2*n+1)*(n+1)*(5*n^2-11*n+4)))
end:
seq(a(n), n=0..45); # Alois P. Heinz, Sep 07 2022
-
Table[Binomial[n, Floor[n/3]] -Sum[Binomial[n,i], {i,0,Floor[n/3] -1}], {n,0,40}] (* David Callan, Oct 26 2017 *)
a[n_] := Binomial[n, Floor[n/3]] (1 + Hypergeometric2F1[1, -n + Floor[n/3], 1 + Floor[n/3], -1]) - 2^n; Table[a[n], {n, 0, 38}] (* Peter Luschny, Jun 20 2024 *)
-
{a(n)=polcoeff((1/x)*serreverse(x*(1+x)^2/((1+x)^3+x^3+x*O(x^n))),n)}
-
n=30;
{a0=1;a1=1;a2=1;for(k=1, n/3,print1(a0,", ",a1,", ",a2,", ");
a0=2*a2;a1=2*a0-binomial(3*k,k)/(2*k+1);a2=2*a1-binomial(3*k+1,k)/(k+1))
} \\ Vladimir M. Zarubin, Aug 05 2019
-
[binomial(n, (n//3)) - sum(binomial(n,j) for j in (0..(n//3)-1)) for n in (0..40)] # G. C. Greubel, Jul 30 2022
A167543
a(n) = (n-5)*(n-6)*(n-7)*(n-16)/24.
Original entry on oeis.org
-2, -7, -15, -25, -35, -42, -42, -30, 0, 55, 143, 273, 455, 700, 1020, 1428, 1938, 2565, 3325, 4235, 5313, 6578, 8050, 9750, 11700, 13923, 16443, 19285, 22475, 26040, 30008, 34408, 39270, 44625, 50505, 56943, 63973, 71630, 79950, 88970, 98728, 109263, 120615
Offset: 8
-
[Binomial(n-5,3)*(n-16)/4: n in [8..60]]; // G. C. Greubel, Jul 30 2022
-
Table[(n-5)*(n-6)*(n-7)*(n-16)/24, {n,8,60}] (* G. C. Greubel, Jun 15 2016 *)
-
[binomial(n-5,3)*(n-16)/4 for n in (8..60)] # G. C. Greubel, Jul 30 2022
Definition simplified, sequence extended by
R. J. Mathar, Nov 12 2009
A126030
Riordan array (1/(1+x^3),x/(1+x^3)).
Original entry on oeis.org
1, 0, 1, 0, 0, 1, -1, 0, 0, 1, 0, -2, 0, 0, 1, 0, 0, -3, 0, 0, 1, 1, 0, 0, -4, 0, 0, 1, 0, 3, 0, 0, -5, 0, 0, 1, 0, 0, 6, 0, 0, -6, 0, 0, 1, -1, 0, 0, 10, 0, 0, -7, 0, 0, 1, 0, -4, 0, 0, 15, 0, 0
Offset: 0
Triangle begins
.1,
.0, 1,
.0, 0, 1,
.-1, 0, 0, 1,
.0, -2, 0, 0, 1,
.0, 0, -3, 0, 0, 1,
.1, 0, 0, -4, 0, 0, 1,
.0, 3, 0, 0, -5, 0, 0, 1,
.0, 0, 6, 0, 0, -6, 0, 0, 1,
.-1, 0, 0, 10, 0, 0, -7, 0, 0, 1,
.0, -4, 0, 0, 15, 0, 0, -8, 0, 0, 1
Showing 1-4 of 4 results.
Comments