cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A111373 A generalized Pascal triangle.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 3, 0, 0, 1, 3, 0, 0, 4, 0, 0, 1, 0, 7, 0, 0, 5, 0, 0, 1, 0, 0, 12, 0, 0, 6, 0, 0, 1, 12, 0, 0, 18, 0, 0, 7, 0, 0, 1, 0, 30, 0, 0, 25, 0, 0, 8, 0, 0, 1, 0, 0, 55, 0, 0, 33, 0, 0, 9, 0, 0, 1, 55, 0, 0, 88, 0, 0, 42, 0, 0, 10, 0, 0, 1, 0, 143, 0, 0, 130, 0, 0, 52, 0, 0, 11, 0, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2005

Keywords

Comments

First diagonal is A000012, the all 1's sequence. Second nonzero diagonal is A000027 = n. Third nonzero diagonal is A027379 = n*(n+5)/2 for n>=1, or essentially A000217(n) - 3. Fourth nonzero diagonal is A111396. - Jonathan Vos Post, Nov 10 2005
Row sums are A126042. - Paul Barry, Dec 16 2006

Examples

			Triangle begins:
   1;
   0,  1;
   0,  0,  1;
   1,  0,  0,  1;
   0,  2,  0,  0,  1;
   0,  0,  3,  0,  0,  1;
   3,  0,  0,  4,  0,  0,  1;
   0,  7,  0,  0,  5,  0,  0,  1;
   0,  0, 12,  0,  0,  6,  0,  0,  1;
  12,  0,  0, 18,  0,  0,  7,  0,  0,  1;
   0, 30,  0,  0, 25,  0,  0,  8,  0,  0,  1;
   0,  0, 55,  0,  0, 33,  0,  0,  9,  0,  0,  1;
  55,  0,  0, 88,  0,  0, 42,  0,  0, 10,  0,  0,  1;
Production matrix is
  0, 1;
  0, 0, 1;
  1, 0, 0, 1;
  0, 1, 0, 0, 1;
  0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 1, 0, 0, 1;
		

Crossrefs

First column is A001764. Bears same relation to A001764 as A053121 does to A000108.

Programs

  • Magma
    function A111373(n,k)
      if k eq n then return 1;
      elif ((n-k) mod 3) eq 0 then return (3/(n-k))*Binomial(n, Floor((n-k-3)/3))*(k+1);
      else return 0;
      end if; return A111373;
    end function;
    [A111373(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 30 2022
    
  • Mathematica
    T[n_, k_]= If[k==n, 1, If[Mod[n-k, 3]==0, (3/(n-k))*Binomial[n, (n-k)/3 -1]*(k + 1), 0]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 30 2022 *)
  • SageMath
    def A111373(n,k):
        if(k==n): return 1
        elif ((n-k)%3==0): return (3/(n-k))*binomial(n, (n-k)/3 -1)*(k+1)
        else: return 0
    flatten([[A111373(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 30 2022

Formula

Each term is the sum of the two terms above it to the left and two steps to the right.
From Paul Barry, Dec 16 2006: (Start)
Riordan array (g(x^3),x*g(x^3)) where g(x)=(2/sqrt(3x))*sin(asin(sqrt(27x/4))/3), the g.f. of A001764;
Number triangle T(n,k) = C(3*floor((n+2k)/3)-2k,floor((n+2k)/3)-k)*(k+1)/(2*floor((n+2k)/3)-k+ 1)(2*cos(2*pi*(n-k)/3)+1)/3. (End)
Inverse of Riordan array (1/(1+x^3), x/(1+x^3)), A126030. - Paul Barry, Dec 16 2006
G.f. (x*A(x))^k=sum{n>=k, T(n,k)*x^n}, where A(x)=1+x^3*A(x)^3. - Vladimir Kruchinin, Feb 18 2011
From G. C. Greubel, Jul 30 2022: (Start)
T(n, k) = (3/(n-k))*binomial(n, (n-k)/3 -1)*(k+1) for ( (n-k) mod 3 ) = 0, otherwise 0, with T(n, n) = 1.
T(n, n-3) = A000027(n-2), n >= 3.
T(n, n-6) = A027379(n-5), n >= 6.
T(n, n-9) = A111396(n-8), n >= 9.
T(n, n-12) = A167543(n+5), n >= 12.
Sum_{k=0..n} T(n, k) = A126042(n). (End)

Extensions

More terms from Kerri Sullivan (ksulliva(AT)ashland.edu), Jan 23 2006

A124305 Riordan array (1, 2*sqrt(3)*sin(arcsin(3*sqrt(3)*x/2)/3)/3).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 3, 0, 3, 0, 1, 0, 0, 7, 0, 4, 0, 1, 0, 12, 0, 12, 0, 5, 0, 1, 0, 0, 30, 0, 18, 0, 6, 0, 1, 0, 55, 0, 55, 0, 25, 0, 7, 0, 1, 0, 0, 143, 0, 88, 0, 33, 0, 8, 0, 1
Offset: 0

Views

Author

Paul Barry, Oct 25 2006

Keywords

Examples

			Triangle begins
  1,
  0,  1,
  0,  0,  1,
  0,  1,  0,  1,
  0,  0,  2,  0,  1,
  0,  3,  0,  3,  0,  1,
  0,  0,  7,  0,  4,  0,  1,
  0, 12,  0, 12,  0,  5,  0,  1
From _Paul Barry_, Sep 28 2009: (Start)
Production matrix is
  0, 1,
  0, 0, 1,
  0, 1, 0, 1,
  0, 0, 1, 0, 1,
  0, 1, 0, 1, 0, 1,
  0, 0, 1, 0, 1, 0, 1,
  0, 1, 0, 1, 0, 1, 0, 1,
  0, 0, 1, 0, 1, 0, 1, 0, 1,
  0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 (End)
		

Crossrefs

Cf. A047749 (row sums), A098746 (diagonal sums), A124304 (inverse).

Programs

  • Magma
    A124305:= func< n,k | n eq 0 select 1 else (1/2)*(1+(-1)^(n-k))*(k/n)*Binomial(n + Floor((n-k)/2) -1, n-1) >;
    [A124305(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 25 2023
    
  • Mathematica
    A124305[n_, k_]:= If[n==0, 1, (1/2)*(1+(-1)^(n-k))*(k/n)*Binomial[n +(n-k)/2 -1, (n-k)/2]];
    Table[A124305[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 19 2023 *)
  • SageMath
    def A124305(n,k): return 1 if n==0 else ((n-k+1)%2)*k*binomial(n + (n-k)//2 -1, n-1)//n
    flatten([[A124305(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 25 2023

Formula

Sum_{k=0..n} T(n, k) = A047749(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/2)*(1 + (-1)^n)*A098746(n/2).
From G. C. Greubel, Aug 19 2023: (Start)
T(n, k) = (1/2)*(1 + (-1)^(n-k))*(k/n)*binomial(n + (n-k)/2 - 1, (n-k)/2), with T(0, 0) = 1.
T(n, n) = 1.
T(n, n-2) = A001477(n-2).
T(n, n-4) = A055998(n-4).
T(n, n-6) = A111396(n-6).
T(n, 0) = 0^n.
T(n, 1) = ((1-(-1)^n)/2)*A001764(floor((n-1)/2)).
T(n, 2) = ((1+(-1)^n)/2)*A006013(floor((n-2)/2)).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n * A047749(n). (End)

A167541 a(n) = -(n - 4)*(n - 5)*(n - 12)/6.

Original entry on oeis.org

2, 5, 8, 10, 10, 7, 0, -12, -30, -55, -88, -130, -182, -245, -320, -408, -510, -627, -760, -910, -1078, -1265, -1472, -1700, -1950, -2223, -2520, -2842, -3190, -3565, -3968, -4400, -4862, -5355, -5880, -6438, -7030, -7657, -8320, -9020, -9758, -10535, -11352
Offset: 6

Views

Author

Jamel Ghanouchi, Nov 06 2009

Keywords

Comments

Essentially the same as A111396.
The coefficient of x^(n-6) of the Polynomial B_n(x) defined in A135929.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{2,5,8,10},50] (* Harvey P. Dale, May 27 2012 *)

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x^6*(2 - 3*x)/(x - 1)^4.
a(n) = -A111396(n-12) for n > 11. - Bruno Berselli, Oct 02 2018

Extensions

Minor edits by N. J. A. Sloane, Nov 09 2009
Definition simplified, sequence extended by R. J. Mathar, Nov 12 2009

A368514 Irregular triangle T(n,k) read by rows: similar to A009766 but length of rows grows like log(3)/log(2).

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 0, 1, 3, 3, 1, 4, 7, 0, 1, 5, 12, 12, 0, 1, 6, 18, 30, 30, 1, 7, 25, 55, 85, 0, 1, 8, 33, 88, 173, 173, 1, 9, 42, 130, 303, 476, 0, 1, 10, 52, 182, 485, 961, 961, 0, 1, 11, 63, 245, 730, 1691, 2652, 2652, 1, 12, 75, 320, 1050, 2741, 5393, 8045, 0
Offset: 1

Views

Author

Ruud H.G. van Tol, Dec 28 2023

Keywords

Examples

			Triangle T(n,k) begins:
 n|k:1|  2|  3|  4|  5|  6|  7|  8|...
--+---+---+---+---+---+---+---+---+---
 1|  1
 2|  1   0
 3|  1   1
 4|  1   2   0
 5|  1   3   3
 6|  1   4   7   0
 7|  1   5  12  12   0
 8|  1   6  18  30  30
 9|  1   7  25  55  85   0
10|  1   8  33  88 173 173
11|  1   9  42 130 303 476   0
12|  1  10  52 182 485 961 961   0
...
		

Crossrefs

Cf. A009766 (Catalan's triangle), A098294 (row lengths), A100982 (row sums).

Programs

  • PARI
    row(n) = my(v=Vec([1], logint(3^n, 2)+1-n), c=1); for(i=2, n, for(j=2, c, v[j]+=v[j-1]); c=logint(3^i,2)+1-i); v
    
  • PARI
    rows(n) = my(v=vector(n, i, Vec([1], logint(3^i,2)+1-i))); for(i=3, n, for(j=2, #v[i-1], v[i][j]=v[i][j-1]+v[i-1][j])); v

Formula

Row length L(n) = A098294(n) = floor(n*log(3)/log(2)) + 1 - n.
T(n,1) = 1.
T(n+1,k) = T(n+1,k-1) + T(n,k) for 1 < k <= L(n).
T(n+1,L(n+1)) = 0 if L(n+1) > L(n).
T(n+1,2) = n-1.
T(n+3,3) = A055998(n-1) = (n-1)*(n+4)/2.
T(n+5,4) = A111396(n-1) = (n-1)*(n+6)*(n+7)/6.
T(n+1,k) = Sum_{j=1..k} T(n,j) for 1 <= k <= L(n).

Extensions

Corrected by Ruud H.G. van Tol, Nov 29 2024

A111144 a(n) = n*(n+13)*(n+14)/6.

Original entry on oeis.org

0, 35, 80, 136, 204, 285, 380, 490, 616, 759, 920, 1100, 1300, 1521, 1764, 2030, 2320, 2635, 2976, 3344, 3740, 4165, 4620, 5106, 5624, 6175, 6760, 7380, 8036, 8729, 9460, 10230, 11040, 11891, 12784, 13720, 14700, 15725, 16796, 17914, 19080, 20295, 21560
Offset: 0

Views

Author

Jonathan Vos Post, Nov 12 2005

Keywords

Comments

After a(1) all values have at least three prime factors with multiplicity, for example a(33) = 11891 = 11 * 23 * 47 and a(49) = 31899 = 3 * 7^3 * 31.

Crossrefs

Programs

Formula

a(n) = A000292(n) + 4n^2 + 30n.
G.f.: x*(35 - 60*x + 26*x^2)/(1-x)^4. - Colin Barker, Jan 11 2012
From Amiram Eldar, Jul 30 2024: (Start)
Sum_{n>=1} 1/a(n) = 811373/65585520.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/13 - 752153/7287280. (End)
Showing 1-5 of 5 results.