cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A154731 Integers of the form k = m^3-m^2 such that k-+1 are primes.

Original entry on oeis.org

4, 18, 180, 2028, 8820, 34848, 108288, 191748, 720900, 875520, 960498, 990000, 1355310, 1629108, 1713600, 1756920, 2334948, 2609028, 7376850, 8448048, 21639798, 37148148, 42023088, 48893940, 60544008, 63840000, 100328400
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[k=n^3-n^2;If[PrimeQ[k-1]&&PrimeQ[k+1],AppendTo[lst,p]],{n,7!}];lst

Formula

A045991 INTERSECT A014574. - R. J. Mathar, Jul 16 2022

A154732 Integers k such that (k^3 + k^2) -+ 1 are primes.

Original entry on oeis.org

2, 5, 9, 11, 12, 26, 44, 47, 62, 69, 71, 89, 125, 140, 147, 179, 219, 254, 264, 285, 294, 312, 317, 326, 341, 344, 384, 407, 461, 495, 659, 680, 714, 740, 837, 845, 861, 866, 867, 957, 989, 1071, 1079, 1152, 1215, 1310, 1437, 1481, 1499, 1511, 1530, 1577
Offset: 1

Views

Author

Keywords

Examples

			2^3 + 2^2 = 12 -+ 1 = 11 and 13 (both prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..5*10^3] |IsPrime(n^3+n^2-1) and IsPrime(n^3+n^2+1)]; // Vincenzo Librandi, Dec 26 2015
    
  • Maple
    select(k -> andmap(isprime,[k^3+k^2-1,k^3+k^2+1]), [$1..10000]); # Robert Israel, Jan 07 2025
  • Mathematica
    lst={};Do[k=n^3+n^2;If[PrimeQ[k-1]&&PrimeQ[k+1],AppendTo[lst,n]],{n,8!}];lst
    Select[Range[3000], PrimeQ[#^3 + #^2 - 1] && PrimeQ[#^3 + #^2 + 1] &] (* Vincenzo Librandi, Dec 26 2015 *)
  • PARI
    isok(n) = isprime(n^3+n^2+1) && isprime(n^3+n^2-1); \\ Michel Marcus, Dec 27 2015

A154733 Integers of the form k = m^3+m^2 such that k-+1 are primes.

Original entry on oeis.org

12, 150, 810, 1452, 1872, 18252, 87120, 106032, 242172, 333270, 362952, 712890, 1968750, 2763600, 3198132, 5767380, 10551420, 16451580, 18469440, 23230350, 25498620, 30468672, 31955502, 34752252, 39768102, 40825920, 56770560
Offset: 1

Views

Author

Keywords

Examples

			2^3+2^2 = 12, and 12-+1 are primes, so 12 is a term.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[k=n^3+n^2;If[PrimeQ[k-1]&&PrimeQ[k+1],AppendTo[lst,k]],{n,8!}];lst

Formula

A011379 INTERSECT A014574. - R. J. Mathar, Jul 16 2022
a(n) = A011379(A154732(n)). - R. J. Mathar, Jul 16 2022
Showing 1-3 of 3 results.