Original entry on oeis.org
1, 2, 8, 44, 296, 2312, 20384, 199376, 2138336, 24936416, 314142848, 4252773824, 61594847360, 950757812864, 15586971531776, 270569513970944, 4959071121374720, 95721139472072192, 1941212789888952320, 41271304403571227648, 918030912312297752576, 21325054720042613565440
Offset: 0
- A. N. Khovanskii. The Application of Continued Fractions and Their Generalizations to Problem in Approximation Theory. Groningen: Noordhoff, Netherlands, 1963. See p.141 (10.19).
- H. P. Robinson, Letter to N. J. A. Sloane, Nov 19 1973.
-
a:= proc(n) option remember; `if`(n=0, 1,
n*(n+1)! -add((n-k+1)!*a(k), k=1..n-1))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 06 2013
-
a[n_] := a[n] = If[n==0, 1, n*(n+1)! - Sum[(n-k+1)!*a[k], {k, 1, n-1}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 13 2017, after Alois P. Heinz *)
-
{a(n)=if(n<0,0,(matrix(n+2,n+2,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+1)!/1!*x^i)),m-j-1))))^-1)[n+2,2])}
A111541
Matrix logarithm of triangle A111536.
Original entry on oeis.org
0, 1, 0, 3, 2, 0, 14, 5, 3, 0, 84, 22, 8, 4, 0, 600, 128, 36, 12, 5, 0, 4908, 896, 212, 58, 17, 6, 0, 44952, 7220, 1496, 360, 90, 23, 7, 0, 454344, 65336, 12128, 2652, 602, 134, 30, 8, 0, 5016768, 653720, 110288, 22320, 4736, 974, 192, 38, 9, 0, 60062352, 7155104
Offset: 0
Triangle begins:
0;
1,0;
3,2,0;
14,5,3,0;
84,22,8,4,0;
600,128,36,12,5,0;
4908,896,212,58,17,6,0;
44952,7220,1496,360,90,23,7,0;
454344,65336,12128,2652,602,134,30,8,0;
5016768,653720,110288,22320,4736,974,192,38,9,0; ...
-
T(n,k)=local(M=matrix(n+1,n+1,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+1)!/1!*x^i)),m-j-1))))); return(if(n
A111538
Column 2 of triangle A111536; also equals column 0 of triangle A111541, which is the matrix log of triangle A111536.
Original entry on oeis.org
1, 3, 14, 84, 600, 4908, 44952, 454344, 5016768, 60062352, 775089312, 10728930912, 158638465536, 2496437377728, 41674737264000, 735831528563328, 13704461848753152, 268562085051533568, 5525005742876244480
Offset: 0
-
{a(n)=if(n<0,0,(matrix(n+3,n+3,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+1)!/1!*x^i)),m-j-1))))^-1)[n+3,3])}
A111540
Matrix inverse of triangle A111536.
Original entry on oeis.org
1, -1, 1, -2, -2, 1, -8, -2, -3, 1, -44, -8, -2, -4, 1, -296, -44, -8, -2, -5, 1, -2312, -296, -44, -8, -2, -6, 1, -20384, -2312, -296, -44, -8, -2, -7, 1, -199376, -20384, -2312, -296, -44, -8, -2, -8, 1, -2138336, -199376, -20384, -2312, -296, -44, -8, -2, -9, 1, -24936416, -2138336, -199376, -20384, -2312, -296
Offset: 0
Triangle begins:
1;
-1,1;
-2,-2,1;
-8,-2,-3,1;
-44,-8,-2,-4,1;
-296,-44,-8,-2,-5,1;
-2312,-296,-44,-8,-2,-6,1;
-20384,-2312,-296,-44,-8,-2,-7,1;
-199376,-20384,-2312,-296,-44,-8,-2,-8,1; ...
After initial terms, all columns are equal to -A111537.
A111542
Column 1 of triangle A111541, which is the matrix logarithm of A111536.
Original entry on oeis.org
0, 2, 5, 22, 128, 896, 7220, 65336, 653720, 7155104, 84998768, 1089232160, 14981704736, 220233312896, 3447195190592, 57261708795776, 1006401042534272, 18663532970127872, 364283224523605760, 7466218532765196800
Offset: 0
-
{a(n)=local(M=matrix(n+2,n+2,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+1)!/1!*x^i)),m-j-1))))); if(n<0,0,sum(i=1,#M,(M^0-M)^i/i)[n+2,2])}
A111543
Column 2 of triangle A111541, which is the matrix logarithm of A111536.
Original entry on oeis.org
0, 3, 8, 36, 212, 1496, 12128, 110288, 1108064, 12171872, 145061120, 1864321472, 25710635648, 378871778432, 5943632568320, 98936446059776, 1742232571097600, 32367994818881024, 632845309575139328, 12991224275641441280
Offset: 0
-
{a(n)=local(M=matrix(n+3,n+3,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+1)!/1!*x^i)),m-j-1))))); if(n<0,0,sum(i=1,#M,(M^0-M)^i/i)[n+3,3])}
Original entry on oeis.org
1, 2, 7, 34, 211, 1564, 13291, 126430, 1326211, 15184744, 188348659, 2515991290, 36018842875, 550317892372, 8940695112331, 153950966471734, 2801321782936819, 53720913548093344, 1083061044893428675
Offset: 0
-
{a(n)=if(n<0,0,sum(k=1,n+1,(matrix(n+k,n+k,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+1)!/1!*x^i)),m-j-1))))^-1)[n+1,k]))}
A111553
Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT(column 0 of T^p) = p*(column p+4 of T), or [T^p](m,0) = p*T(p+m,p+4) for all m>=1 and p>=-4.
Original entry on oeis.org
1, 1, 1, 6, 2, 1, 46, 10, 3, 1, 416, 72, 16, 4, 1, 4256, 632, 116, 24, 5, 1, 48096, 6352, 1016, 184, 34, 6, 1, 591536, 70912, 10176, 1664, 282, 46, 7, 1, 7840576, 864192, 113216, 17024, 2696, 416, 60, 8, 1, 111226816, 11371072, 1375456, 192384, 28792, 4256, 592, 76, 9, 1
Offset: 0
SHIFT_LEFT(column 0 of T^-4) = -4*(column 0 of T);
SHIFT_LEFT(column 0 of T^-3) = -3*(column 1 of T);
SHIFT_LEFT(column 0 of T^-2) = -2*(column 2 of T);
SHIFT_LEFT(column 0 of T^-1) = -1*(column 3 of T);
SHIFT_LEFT(column 0 of log(T)) = column 4 of T;
SHIFT_LEFT(column 0 of T^1) = 1*(column 5 of T);
where SHIFT_LEFT of column sequence shifts 1 place left.
Triangle T begins:
1;
1,1;
6,2,1;
46,10,3,1;
416,72,16,4,1;
4256,632,116,24,5,1;
48096,6352,1016,184,34,6,1;
591536,70912,10176,1664,282,46,7,1;
7840576,864192,113216,17024,2696,416,60,8,1; ...
After initial term, column 3 is 4 times column 0.
Matrix inverse T^-1 = A111559 starts:
1;
-1,1;
-4,-2,1;
-24,-4,-3,1;
-184,-24,-4,-4,1;
-1664,-184,-24,-4,-5,1;
-17024,-1664,-184,-24,-4,-6,1; ...
where columns are all equal after initial terms;
compare columns of T^-1 to column 3 of T.
Matrix logarithm log(T) = A111560 is:
0;
1,0;
5,2,0;
34,7,3,0;
282,44,10,4,0;
2696,354,60,14,5,0;
28792,3328,470,84,19,6,0; ...
compare column 0 of log(T) to column 4 of T.
Cf.
A111531 (column 0),
A111554 (column 1),
A111555 (column 2),
A111556 (column 3),
A111557 (column 4),
A111558 (row sums),
A111559 (matrix inverse),
A111560 (matrix log); related tables:
A111528,
A104980,
A111536,
A111544.
-
T[n_, k_] := T[n, k] = If[nJean-François Alcover, Aug 09 2018, from PARI *)
-
T(n,k)=if(n
A111544
Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT(column 0 of T^p) = p*(column p+3 of T), or [T^p](m,0) = p*T(p+m,p+3) for all m>=1 and p>=-3.
Original entry on oeis.org
1, 1, 1, 5, 2, 1, 33, 9, 3, 1, 261, 57, 15, 4, 1, 2361, 441, 99, 23, 5, 1, 23805, 3933, 783, 165, 33, 6, 1, 263313, 39249, 7083, 1383, 261, 45, 7, 1, 3161781, 430677, 71415, 13083, 2361, 393, 59, 8, 1, 40907241, 5137641, 789939, 136863, 23805, 3861, 567, 75, 9, 1
Offset: 0
SHIFT_LEFT(column 0 of T^-3) = -3*(column 0 of T);
SHIFT_LEFT(column 0 of T^-2) = -2*(column 1 of T);
SHIFT_LEFT(column 0 of T^-1) = -1*(column 2 of T);
SHIFT_LEFT(column 0 of log(T)) = column 3 of T;
SHIFT_LEFT(column 0 of T^1) = 1*(column 4 of T);
where SHIFT_LEFT of column sequence shifts 1 place left.
Triangle T begins:
1;
1,1;
5,2,1;
33,9,3,1;
261,57,15,4,1;
2361,441,99,23,5,1;
23805,3933,783,165,33,6,1;
263313,39249,7083,1383,261,45,7,1;
3161781,430677,71415,13083,2361,393,59,8,1; ...
After initial term, column 2 is 3 times column 0.
Matrix inverse T^-1 = A111548 starts:
1;
-1,1;
-3,-2,1;
-15,-3,-3,1;
-99,-15,-3,-4,1;
-783,-99,-15,-3,-5,1;
-7083,-783,-99,-15,-3,-6,1; ...
where columns are all equal after initial terms;
compare columns of T^-1 to column 2 of T.
Matrix logarithm log(T) = A111549 is:
0;
1,0;
4,2,0;
23,6,3,0;
165,32,9,4,0;
1383,222,47,13,5,0;
13083,1824,321,70,18,6,0; ...
compare column 0 of log(T) to column 3 of T.
-
T[n_, k_] := T[n, k] = If[nJean-François Alcover, Aug 09 2018, from PARI *)
-
T(n,k)=if(n
Showing 1-9 of 9 results.
Comments