cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111662 Expansion of x^2*(1-x)*(x^2+x+1)*(x^6+x^3+1)/((2*x-1)*(2*x^9-x^6+x^3-1)).

Original entry on oeis.org

0, 0, 1, 2, 4, 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4610, 9220, 18440, 36882, 73764, 147528, 295056, 590112, 1180224, 2360450, 4720900, 9441800, 18883606, 37767212, 75534424, 151068852, 302137704, 604275408, 1208550818, 2417101636
Offset: 0

Views

Author

Creighton Dement, Aug 14 2005

Keywords

Comments

Initial terms factored: [0,0,1,2,(2)^2,(3)^2,(2) (3)^2,(2)^2 (3)^2,(2)^3 (3)^2,(2)^4 (3)^2,(2)^5 (3)^2,(2)^6 (3)^2,(2)^7 (3)^2,(2)^8 (3)^2,(2) (5) (461),(2)^2 (5) (461),(2)^3 (5) (461),(2) (3)^3 (683),(2)^2 (3)^3 (683),(2)^3 (3)^3 (683),(2)^4 (3)^3 (683),(2)^5 (3)^3 (683),(2)^6 (3)^3 (683),(2) (5)^2 (17) (2777),(2)^2 (5)^2 (17) (2777),(2)^3 (5)^2 (17) (2777),(2) (7) (19) (70991),(2)^2 (7) (19) (70991),(2)^3 (7) (19) (70991),(2)^2 (3)^2 (11) (381487)]
Note that for each 3 terms in a row the sequence doubles: a(3*n+1) = 2*a(3*n) = 4*a(3*n-1). Andrew Howroyd, Mar 09 2024
Floretion Algebra Multiplication Program, FAMP Code: 2ibaseksumseq[.5'i + .5i' + .5'ii' + .5'jj' + .5'kk' + .5e], sumtype: sum[(Y[0], Y[1], Y[2]),mod(3)

Crossrefs

Cf. A111663.

Programs

  • Mathematica
    CoefficientList[Series[x^2*(1 - x)*(x^2 + x + 1)*(x^6 + x^3 + 1)/((2*x - 1)*(2*x^9 - x^6 + x^3 - 1)), {x, 0, 50}], x] (* G. C. Greubel,Jun 09 2017 *)
    LinearRecurrence[{2,0,1,-2,0,-1,2,0,2,-4},{0,0,1,2,4,9,18,36,72,144,288,576},40] (* Harvey P. Dale, Mar 26 2024 *)
  • PARI
    Vec(x^2*(1-x)*(x^2+x+1)*(x^6+x^3+1)/((2*x-1)*(2*x^9-x^6+x^3-1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = 2*a(n-1) + a(n-3) - 2*a(n-4) - a(n-6) + 2*a(n-7) + 2*a(n-9) - 4*a(n-10) for n>11. - Colin Barker, May 11 2019