A111662 Expansion of x^2*(1-x)*(x^2+x+1)*(x^6+x^3+1)/((2*x-1)*(2*x^9-x^6+x^3-1)).
0, 0, 1, 2, 4, 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4610, 9220, 18440, 36882, 73764, 147528, 295056, 590112, 1180224, 2360450, 4720900, 9441800, 18883606, 37767212, 75534424, 151068852, 302137704, 604275408, 1208550818, 2417101636
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,1,-2,0,-1,2,0,2,-4).
Crossrefs
Cf. A111663.
Programs
-
Mathematica
CoefficientList[Series[x^2*(1 - x)*(x^2 + x + 1)*(x^6 + x^3 + 1)/((2*x - 1)*(2*x^9 - x^6 + x^3 - 1)), {x, 0, 50}], x] (* G. C. Greubel,Jun 09 2017 *) LinearRecurrence[{2,0,1,-2,0,-1,2,0,2,-4},{0,0,1,2,4,9,18,36,72,144,288,576},40] (* Harvey P. Dale, Mar 26 2024 *)
-
PARI
Vec(x^2*(1-x)*(x^2+x+1)*(x^6+x^3+1)/((2*x-1)*(2*x^9-x^6+x^3-1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
Formula
a(n) = 2*a(n-1) + a(n-3) - 2*a(n-4) - a(n-6) + 2*a(n-7) + 2*a(n-9) - 4*a(n-10) for n>11. - Colin Barker, May 11 2019
Comments