cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A195013 Multiples of 2 and of 3 interleaved: a(2n-1) = 2n, a(2n) = 3n.

Original entry on oeis.org

2, 3, 4, 6, 6, 9, 8, 12, 10, 15, 12, 18, 14, 21, 16, 24, 18, 27, 20, 30, 22, 33, 24, 36, 26, 39, 28, 42, 30, 45, 32, 48, 34, 51, 36, 54, 38, 57, 40, 60, 42, 63, 44, 66, 46, 69, 48, 72, 50, 75, 52, 78, 54, 81, 56, 84, 58, 87, 60, 90, 62, 93, 64, 96, 66, 99, 68, 102
Offset: 1

Views

Author

Omar E. Pol, Sep 09 2011

Keywords

Comments

First differences of A195014.

Crossrefs

Cf. A111712 (partial sums of this sequence prepended with 1).

Programs

  • Haskell
    import Data.List (transpose)
    a195013 n = a195013_list !! (n-1)
    a195013_list = concat $ transpose [[2, 4 ..], [3, 6 ..]]
    -- Reinhard Zumkeller, Apr 06 2015
    
  • Magma
    &cat[[2*n,3*n]: n in [1..34]]; // Bruno Berselli, Sep 25 2011
    
  • Mathematica
    With[{r = Range[50]}, Riffle[2*r, 3*r]] (* or *)
    LinearRecurrence[{0, 2, 0, -1}, {2, 3, 4, 6}, 100] (* Paolo Xausa, Feb 09 2024 *)
  • PARI
    a(n)=(5*n+(n-2)*(-1)^n+2)/4 \\ Charles R Greathouse IV, Sep 24 2015

Formula

Pair(2*n, 3*n).
From Bruno Berselli, Sep 26 2011: (Start)
G.f.: x*(2+3*x)/(1-x^2)^2.
a(n) = (5*n+(n-2)*(-1)^n+2)/4.
a(n) = 2*a(n-2) - a(n-4) = a(n-2) + A010693(n-1).
a(n)+a(-n) = A010673(n).
a(n)-a(-n) = A106832(n). (End)

A111710 Consider the triangle shown below in which the n-th row contains the n smallest numbers greater than those in the previous row such that the arithmetic mean is an integer. Sequence contains the leading diagonal.

Original entry on oeis.org

1, 4, 7, 13, 18, 27, 34, 46, 55, 70, 81, 99, 112, 133, 148, 172, 189, 216, 235, 265, 286, 319, 342, 378, 403, 442, 469, 511, 540, 585, 616, 664, 697, 748, 783, 837, 874, 931, 970, 1030, 1071, 1134, 1177, 1243, 1288, 1357, 1404, 1476, 1525, 1600, 1651, 1729
Offset: 1

Views

Author

Amarnath Murthy, Aug 24 2005

Keywords

Examples

			The fourth row is 8,9,10 and 13,(8+9+10 +13)/4 = 10.
Triangle begins:
1
2 4
5 6 7
8 9 10 13
14 15 16 17 18
19 20 21 22 23 27
28 29 30 31 32 33 34
		

Crossrefs

Cf. A085787. - R. J. Mathar, Aug 15 2008

Programs

  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {1, 4, 7, 13, 18}, 100] (* Paolo Xausa, Feb 09 2024 *)
  • PARI
    Vec(x*(1+3*x+x^2)/((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 26 2016

Formula

a(1)=1, a(2n) = a(2n-1)+3n, a(2n+1)=a(2n)+2n+1. - Franklin T. Adams-Watters, May 01 2006
G.f.: -x*(1+3*x+x^2) / ( (1+x)^2*(x-1)^3 ). a(n+1)-a(n) = A080512(n+1). - R. J. Mathar, May 02 2013
From Colin Barker, Jan 26 2016: (Start)
a(n) = (10*n^2+2*(-1)^n*n+10*n+(-1)^n-1)/16.
a(n) = (5*n^2+6*n)/8 for n even.
a(n) = (5*n^2+4*n-1)/8 for n odd. (End)

Extensions

More terms from Franklin T. Adams-Watters, May 01 2006

A111711 Leading column of triangle mentioned in A111710.

Original entry on oeis.org

1, 2, 5, 8, 14, 19, 28, 35, 47, 56, 71, 82, 100, 113, 134, 149, 173, 190, 217, 236, 266, 287, 320, 343, 379, 404, 443, 470, 512, 541, 586, 617, 665, 698, 749, 784, 838, 875, 932, 971, 1031, 1072, 1135, 1178, 1244, 1289, 1358, 1405, 1477, 1526, 1601, 1652
Offset: 1

Views

Author

Amarnath Murthy, Aug 24 2005

Keywords

Comments

Also partial sums of A257143. - Reinhard Zumkeller, Apr 17 2015

Crossrefs

Programs

  • Haskell
    a111711 n = a111711_list !! (n-1)
    a111711_list = 1 : zipWith (+) a111711_list a080512_list
    -- Reinhard Zumkeller, Apr 17 2015
  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{1,2,5,8,14},60] (* Harvey P. Dale, Jun 21 2023 *)

Formula

a(1)=1, a(2n) = a(2n-1)+2n-1, a(2n+1)=a(2n)+3n; a(n) = A111710(n-1)+1. - Franklin T. Adams-Watters, May 01 2006
From Chai Wah Wu, Mar 05 2021: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 5.
G.f.: x*(-x^4 - x^3 - x^2 - x - 1)/((x - 1)^3*(x + 1)^2). (End)
a(n) = (10*n*(n-1) + (-1)^n*(1-2*n)+15)/16. - Eric Simon Jacob, Jun 11 2022

Extensions

More terms from Franklin T. Adams-Watters, May 01 2006
Showing 1-3 of 3 results.