A111817 Number of partitions of 3*4^n into powers of 4, also equals column 1 of triangle A078536, which shifts columns left and up under matrix 4th power.
1, 4, 28, 524, 29804, 5423660, 3276048300, 6744720496300, 48290009081437356, 1221415413140406958252, 110523986015743458745929900, 36150734459755630877180158951596
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..40
Crossrefs
Programs
-
PARI
a(n,q=4)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))
Formula
a(n) = [x^(3*4^n)] 1/Product_{j>=0}(1-x^(4^j)).
Comments