cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A111870 Prime p with prime gap q - p of n-th record merit, where q is smallest prime larger than p and the merit of a prime gap is (q-p)/log(p).

Original entry on oeis.org

2, 3, 7, 113, 1129, 1327, 19609, 31397, 155921, 360653, 370261, 1357201, 2010733, 17051707, 20831323, 191912783, 436273009, 2300942549, 3842610773, 4302407359, 10726904659, 25056082087, 304599508537, 461690510011, 1346294310749, 1408695493609, 1968188556461, 2614941710599, 13829048559701, 19581334192423, 218209405436543, 1693182318746371
Offset: 1

Views

Author

N. J. A. Sloane, based on correspondence with Ed Pegg Jr, Nov 23 2005

Keywords

Comments

As I understand it, the sequence refers to "Smallest prime p whose following gap has bigger merit than the other primes smaller than p." If that is the case, then it has an error. The sequence starts: 2, 3, 7, 113, 1129, 1327, 19609, 31397, 155921, 360653, 370261, 1357201, 4652353, 2010733, ... but you can see that 4652353 > 2010733, so in any case it should be listed after, not before it. But above that, its merit is 10.03 < 10.20, the merit of 2010733, so it is not in a mistaken position: it shouldn't appear in the sequence. - Jose Brox, Dec 31 2005
The logarithmic (base 10) graph seems to be linearly asymptotic to n with slope ~ 1/log(10) which would imply that: log(prime with n-th record merit) ~ n as n goes to infinity. - N. J. A. Sloane, Aug 27 2010
The sequence b(n) = (prime(n+1)/prime(n))^n is increasing for terms prime(n) of this sequence. - Thomas Ordowski, May 04 2012
The smallest prime(n) such that (prime(n+1)/prime(n))^n is increasing: 2, 3, 7, 23, 113, 1129, 1327, ... (A205827). - Thomas Ordowski, May 04 2012
(prime(n+1)/prime(n))^n > 1 + merit(n) for n > 2, where merit(n) = (prime(n+1)-prime(n))/log(prime(n)). - Thomas Ordowski, May 14 2012
Merit(1) + merit(2) + ... + merit(n) =: S(n) ~ n, where merit(n) is as above. - Thomas Ordowski, Aug 03 2012
For the index of a(n), see the comment at A214935. - John W. Nicholson, Nov 21 2013

Examples

			The first few entries correspond to the following gaps. The table gives n, p, gap = q-p and the merit of the gap.
   1,       2,   1, 1.4427
   2,       3,   2, 1.82048
   3,       7,   4, 2.05559
   4,     113,  14, 2.96147
   5,    1129,  22, 3.12985
   6,    1327,  34, 4.72835
   7,   19609,  52, 5.26116
   8,   31397,  72, 6.95352
   9,  155921,  86, 7.19238
  10,  360653,  96, 7.50254
  11,  370261, 112, 8.73501
  12, 1357201, 132, 9.34782
		

References

  • Ed Pegg, Jr., Posting to Seq Fan mailing list, Nov 23 2005

Crossrefs

For the gaps, see A111871.

Programs

  • Mathematica
    With[{s = Map[(#2 - #1)/Log[#1] & @@ # &, Partition[Prime@ Range[10^6], 2, 1]]}, Map[Prime@ FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Jul 19 2018 *)

Formula

a(n) = A277552(n) - A111871(n). - Bobby Jacobs, Nov 13 2016

Extensions

Corrected by Jose Brox, Dec 31 2005
Corrected and edited by Daniel Forgues, Oct 23 2009
Further edited by Daniel Forgues, Nov 01 2009, Nov 13 2009, Nov 24 2009

A114403 Triprime gaps. First differences of A014612.

Original entry on oeis.org

4, 6, 2, 7, 1, 2, 12, 2, 1, 5, 2, 11, 3, 2, 2, 5, 1, 2, 14, 6, 1, 3, 3, 5, 4, 2, 1, 7, 1, 5, 8, 9, 1, 5, 1, 10, 1, 5, 1, 1, 2, 1, 7, 4, 2, 2, 5, 12, 5, 10, 8, 1, 5, 2, 4, 2, 1, 1, 9, 3, 3, 5, 2, 5, 2, 4, 3, 2, 1, 1, 4, 2, 18, 6, 2, 4, 3, 7, 1, 5, 5, 2, 9, 2, 1
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 4 = 12-8 where 8 is the first triprime and 12 is the second.
a(2) = 6 = 18-12
a(3) = 2 = 20-18
a(4) = 7 = 27-20
		

Crossrefs

Programs

  • Maple
    is3Alm := proc(n::integer) local ifa,ex,i ; ifa := op(2,ifactors(n)) ; ex := 0 ; for i from 1 to nops(ifa) do ex := ex+ op(2,op(i,ifa)) ; od : if ex = 3 then RETURN(true) ; else RETURN(false) ; fi ; end: A014612 := proc(n::integer) local resul,i; i :=1; resul := 8 ; while i < n do resul := resul + 1 ; if is3Alm(resul) then i := i+1 ; fi ; od ; RETURN(resul) ; end: A114403 := proc(n::integer) RETURN(A014612(n+1)-A014612(n)) ; end: for n from 1 to 160 do printf("%d,",A114403(n)) ; od: # R. J. Mathar, Apr 25 2006
  • Mathematica
    Differences[Select[Range[425], PrimeOmega[#] == 3 &]] (* Jayanta Basu, Jul 01 2013 *)

Formula

a(n) = A014612(n+1) - A014612(n).

Extensions

Corrected and extended by R. J. Mathar, Apr 25 2006

A114412 Records in semiprime gaps ordered by merit.

Original entry on oeis.org

2, 3, 4, 6, 11, 19, 24, 28, 30, 32, 38, 47, 54, 70, 74, 107, 110, 112, 120, 126, 146
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Comments

There is an associated index list n = 1, 2, 4, 6, 34, 422, 1765, 4585, 8112, 8650, 8861, 75150, ... and an associated semiprime list A001358(n) = 4, 6, 10, 15, 1418, 6559, 17965, 32777, 35103, 35981, 340894, ... - R. J. Mathar, Mar 15 2009

Examples

			Records defined in terms of A065516 and A001358:
.
  n  A065516(n)  A065516(n)/log_10(A001358(n))
  =  ==========  ==============================
  1       2      2 / log_10(4)  = 3.32192809...
  2       3      3 / log_10(6)  = 3.85529162...
  3       1      1 / log_10(9)  = 1.04795163...
  4       4      4 / log_10(10) = 4.00000000
  5       1      1 / log_10(14) = 0.87250286...
  6       6      6 / log_10(15) = 5.10164492...
  7       1      1 / log_10(21) = 0.75630419...
  8       3      3 / log_10(22) = 2.23476557...
  9       1      1 / log_10(25) = 0.71533827...
		

Crossrefs

Programs

  • Mathematica
    sp = 4; m0 = 0;  l = {}; lim = 1000000;
    For[i = 5, i <= lim, i++, If[PrimeOmega[i] == 2, m = (i - sp)/Log[sp]; If[m > m0, m0 = m; AppendTo[l, i - sp]]; sp = i] ]; l (* Robert Price, Oct 29 2018 *)

Formula

a(n) = records in A065516(n)/log_10(A001358(n)) = records in (A001358(n+1) - A001358(n))/log_10(A001358(n)).

Extensions

Corrected and extended by Charles R Greathouse IV, Oct 05 2006
a(16)-a(21) from Donovan Johnson, Feb 17 2010

A114405 5-almost prime gaps. First differences of A014614.

Original entry on oeis.org

16, 24, 8, 28, 4, 8, 42, 6, 8, 4, 20, 8, 35, 9, 12, 6, 2, 8, 20, 4, 8, 56, 10, 14, 4, 9, 3, 12, 20, 10, 6, 8, 4, 28, 4, 20, 32, 15, 21, 4, 2, 18, 4, 14, 26, 4, 15, 5, 4, 4, 8, 4, 2, 26, 16, 6, 2, 8, 20, 48, 20, 34, 6, 3, 27, 2, 4, 20, 1, 7, 16, 8, 4, 4, 6, 30, 6, 6, 12, 6, 3, 11
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Comments

First occurrences of a(n)=1,2,3,.. are at n=69, 17, 27, 5, 48, 8, 70, 3, 14, 23, 82, 15, 150, 24, 38, 1, 172, 42, 258, 11, 39, 135, 102, 2, 779, 45, 65, 4, 518, 76, 263, 37, 211, 62, 13, 1009, 2463, 606, 254, 151, 3348, 7, 4513,... - R. J. Mathar, Oct 06 2007

Examples

			a(1) = 16 = 48-32 where 32 is the first 5-almost prime and 48 is the second.
a(2) = 24 = 72-48.
a(3) = 8 = 80-72.
a(4) = 28 = 108-80.
a(5) = 4 = 112-108.
a(6) = 8 = 120-112.
a(7) = 42 = 162-120.
a(8) = 6 = 168-162.
a(13) = 35 = 243-208.
a(22) = 56 = 368-312.
		

Crossrefs

Programs

  • Mathematica
    Differences[Select[Range[2000],PrimeOmega[#]==5&]] (* Harvey P. Dale, Sep 28 2019 *)

Formula

a(n) = A014614(n+1) - A014614(n).

Extensions

More terms from R. J. Mathar, Oct 06 2007

A114414 Records in 4-almost prime gaps ordered by merit.

Original entry on oeis.org

8, 12, 14, 21, 28
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Comments

Next term (if it exists) associated with A014613 > 1030000. - R. J. Mathar, Mar 13 2007

Examples

			Records defined in terms of A114404 and A014613:
  n  A114404(n)  A114404(n)/log_10(A014613(n))
  =  ==========  =============================
  1      8       8/log_10(16)   = 6.64385619
  2      12      12/log_10(24)  = 8.6943213
  3      4       4/log_10(36)   = 2.57019442
  4      14      14/log_10(40)  = 8.73874891
  5      2       2/log_10(54)   = 1.15447195
  6      4       4/log_10(56)   = 2.2880834
  7      21      21/log_10(60)  = 11.810019
  ...
  13     22      22/log_10(104) = 10.9071078
  ...
  21     28      28/log_10(156) = 12.7671725
		

Crossrefs

Programs

  • Maple
    Digits := 16 : A114414 := proc() local n,a014613,a114414,rec ; a014613 := 16 ; a114414 := 8 ; rec := a114414/log(a014613) ; print(a114414) ; n := 17 ; while true do while numtheory[bigomega](n) <> 4 do n := n+1 ; od ; a114414 := n-a014613 ; if ( evalf(a114414/log(a014613)) > evalf(rec) ) then rec := a114414/log(a014613) ; print(a114414) ; fi ; a014613 := n ; n := n+1 : od ; end: A114414() ; # R. J. Mathar, Mar 13 2007

Formula

a(n) = records in A114404(n)/log_10(A014613(n)) = records in (A014613(n+1) - A014613(n))/log_10(A014613(n)).

A114404 4-almost prime gaps. First differences of A014613.

Original entry on oeis.org

8, 12, 4, 14, 2, 4, 21, 3, 4, 2, 10, 4, 22, 6, 3, 1, 4, 10, 2, 4, 28, 5, 7, 2, 6, 6, 10, 5, 3, 4, 2, 14, 2, 10, 16, 18, 2, 1, 9, 2, 7, 13, 2, 10, 2, 2, 4, 2, 1, 13, 8, 3, 1, 4, 10, 24, 10, 17, 3, 15, 1, 2, 10, 4, 8, 4, 2, 2, 3, 15, 3, 3, 6, 3, 7, 4, 10, 4, 8, 6, 4, 2, 2, 8, 4, 1, 35, 1, 4, 7, 4, 8, 6
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 8 = 24-16 where 16 is the first 4-almost prime and 24 is the second.
a(2) = 12 = 36-24.
a(3) = 4 = 40-36.
a(4) = 14 = 54-40.
a(5) = 2 = 56-54.
a(6) = 4 = 60-56.
a(7) = 21 = 81-60.
a(13) = 22 = 126-104.
a(21) = 28 = 184-156.
		

Crossrefs

Programs

  • Maple
    A114404 := proc(nmax) local a,i,a014613 ; a := [] ; i := 1 ; a014613 := -1 ; while nops(a) < nmax do if numtheory[bigomega](i) = 4 then if a014613 > 0 then a := [op(a),i-a014613] ; fi ; a014613 := i ; fi ; i := i+1 ; end: a ; end: A114404(200) ; # R. J. Mathar, May 10 2007
  • Mathematica
    Differences[Select[Range[800],Total[FactorInteger[#][[All,2]]]==4&]] (* Harvey P. Dale, Feb 14 2017 *)
    Select[Range[1000],PrimeOmega[#]==4&]//Differences (* Harvey P. Dale, May 12 2018 *)

Formula

a(n) = A014613(n+1) - A014613(n).

Extensions

Corrected and extended by R. J. Mathar, May 10 2007

A114406 6-almost prime gaps. First differences of A046306.

Original entry on oeis.org

32, 48, 16, 56, 8, 16, 84, 12, 16, 8, 40, 16, 70, 18, 24, 12, 4, 16, 40, 8, 16, 105, 7, 20, 28, 8, 18, 6, 24, 40, 20, 12, 16, 8, 56, 8, 40, 64, 30, 42, 8, 4, 27, 9, 8, 28, 52, 8, 30, 10, 8, 8, 16, 8, 4, 52, 32, 12, 4, 16, 40, 96, 40, 5, 63, 12, 6, 54, 4, 8, 40, 2, 14, 32, 16, 8, 8, 12, 45
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 32 = 96-64 where 64 is the first 6-almost prime and 96 is the second.
a(2) = 48 = 144-96.
a(3) = 16 = 160-144.
a(4) = 56 = 216-160.
a(5) = 8 = 224-216.
a(6) = 16 = 240-224.
a(7) = 84 = 324-240.
a(8) = 12 = 336-324.
a(22) = 105 = 729-624.
		

Crossrefs

Formula

a(n) = A046306(n+1) - A046306(n).

Extensions

More terms from R. J. Mathar, Aug 31 2007

A114407 7-almost prime gaps. First differences of A046308.

Original entry on oeis.org

64, 96, 32, 112, 16, 32, 168, 24, 32, 16, 80, 32, 140, 36, 48, 24, 8, 32, 80, 16, 32, 210, 14, 40, 56, 16, 36, 12, 48, 80, 40, 24, 32, 16, 112, 16, 80, 107, 21, 60, 84, 16, 8, 54, 18, 16, 56, 104, 16, 60, 20, 16, 16, 32, 16, 8, 104, 64, 24, 8, 32, 80, 192, 80, 10, 126, 24, 12
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 64 = 192-128 where 128 is the first 7-almost prime and 192 is the second.
a(2) = 96 = 288-192.
a(3) = 32 = 320-288.
a(4) = 112 = 432-320.
a(5) = 16 = 448-432.
a(6) = 32 = 480-448.
a(7) = 168 = 648-480.
a(8) = 24 = 672-648.
		

Crossrefs

Programs

  • Mathematica
    Differences[Select[Range[10000],PrimeOmega[#]==7&]] (* Harvey P. Dale, Oct 13 2019 *)

Formula

a(n) = A046308(n+1) - A046308(n).

Extensions

Corrected and extended by R. J. Mathar, Aug 31 2007

A114408 8-almost prime gaps. First differences of A046310.

Original entry on oeis.org

128, 192, 64, 224, 32, 64, 336, 48, 64, 32, 160, 64, 280, 72, 96, 48, 16, 64, 160, 32, 64, 420, 28, 80, 112, 32, 72, 24, 96, 160, 80, 48, 64, 32, 224, 32, 160, 214, 42, 120, 168, 32, 16, 108, 36, 32, 112, 208, 32, 120, 40, 32, 32, 64, 32, 16, 208, 128, 48
Offset: 1

Views

Author

Jonathan Vos Post, Dec 03 2005

Keywords

Examples

			a(1) = 128 = 384-256 = A046310(2) - A046310(1).
a(2) = 192 = 576-384.
a(3) = 64 = 640-576.
a(4) = 224 = 864-640.
a(5) = 32 = 896-864.
a(6) 64 = 960-896.
a(7) = 336 = 1296-960.
a(8) = 48 = 1344-1296.
a(22) = 420 = 2916-2496.
		

Crossrefs

Formula

a(n) = A046310(n+1) - A046310(n).

A114415 Records in 5-almost prime gaps ordered by merit.

Original entry on oeis.org

16, 24, 28, 42, 56, 70
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Comments

Next term, if it exists, is associated with indices above 100000 in A114405 and A014614. - R. J. Mathar, May 10 2007

Examples

			Records defined in terms of A114405 and A014614:
  n  A114405(n)  A114405(n)/log_10(A014614(n))
  =  ==========  =============================
  1      16      16/log_10(32)  = 10.6301699
  2      24      24/log_10(48)  = 14.2751673
  3      8       8/log_10(72)   = 4.30725248
  4      28      28/log_10(80)  = 14.7129144
  5      4       4/log_10(108)  = 1.96712564
  6      8       8/log_10(112)  = 3.90392819
  7      42      42/log_10(120) = 20.2002592
  8      6       6/log_10(168)  = 2.69625443
  ...
  22     56      56/log_10(312) = 22.4524976
		

Crossrefs

Programs

  • Maple
    A014614 := proc(nmax) local a,i; a := [] ; i := 1 ; while nops(a) < nmax do if numtheory[bigomega](i) = 5 then a := [op(a),i] ; fi ; i := i+1 ; end: a ; end: A114405 := proc(a014614) local a,i; a := [] ; for i from 2 to nops(a014614) do a := [op(a), op(i,a014614)-op(i-1,a014614)] ; od ; a ; end: a014614 := A014614(100000) : a114405 := A114405(a014614) : Digits := 30 : rec := -1 : for i from 1 to nops(a114405) do if evalf(a114405[i]/log(a014614[i])) > rec then printf("%d, ",a114405[i]) ; rec := evalf(a114405[i]/log(a014614[i])) ; fi ; od ; # R. J. Mathar, May 10 2007

Formula

a(n) = records in A114405(n)/log_10(A014614(n)) = records in (A014614(n+1) - A014614(n))/log_10(A014614(n)).

Extensions

a(6) from R. J. Mathar, May 10 2007
Showing 1-10 of 16 results. Next