cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A114403 Triprime gaps. First differences of A014612.

Original entry on oeis.org

4, 6, 2, 7, 1, 2, 12, 2, 1, 5, 2, 11, 3, 2, 2, 5, 1, 2, 14, 6, 1, 3, 3, 5, 4, 2, 1, 7, 1, 5, 8, 9, 1, 5, 1, 10, 1, 5, 1, 1, 2, 1, 7, 4, 2, 2, 5, 12, 5, 10, 8, 1, 5, 2, 4, 2, 1, 1, 9, 3, 3, 5, 2, 5, 2, 4, 3, 2, 1, 1, 4, 2, 18, 6, 2, 4, 3, 7, 1, 5, 5, 2, 9, 2, 1
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 4 = 12-8 where 8 is the first triprime and 12 is the second.
a(2) = 6 = 18-12
a(3) = 2 = 20-18
a(4) = 7 = 27-20
		

Crossrefs

Programs

  • Maple
    is3Alm := proc(n::integer) local ifa,ex,i ; ifa := op(2,ifactors(n)) ; ex := 0 ; for i from 1 to nops(ifa) do ex := ex+ op(2,op(i,ifa)) ; od : if ex = 3 then RETURN(true) ; else RETURN(false) ; fi ; end: A014612 := proc(n::integer) local resul,i; i :=1; resul := 8 ; while i < n do resul := resul + 1 ; if is3Alm(resul) then i := i+1 ; fi ; od ; RETURN(resul) ; end: A114403 := proc(n::integer) RETURN(A014612(n+1)-A014612(n)) ; end: for n from 1 to 160 do printf("%d,",A114403(n)) ; od: # R. J. Mathar, Apr 25 2006
  • Mathematica
    Differences[Select[Range[425], PrimeOmega[#] == 3 &]] (* Jayanta Basu, Jul 01 2013 *)

Formula

a(n) = A014612(n+1) - A014612(n).

Extensions

Corrected and extended by R. J. Mathar, Apr 25 2006

A114021 Number of semiprimes between n and n + sqrt(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 1, 2, 3, 3, 3, 3, 3, 2, 2, 2, 1, 0, 1, 1, 1, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 3, 3, 2, 1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
Offset: 0

Views

Author

Jonathan Vos Post, Jan 31 2006

Keywords

Comments

It appears that for n > 37 it is always true that a(n) > 0. The exponent can be reduced further. Since 597 + 597^(0.4129) > 611, leaping the record semiprime gap between 597 and 611, it seems that for n > 597 it is always true that there is a semiprime between n and n^(0.4129). It seems that for n > 2705 it is always true that there is a semiprime between n and n^(0.3509). These conjectures are related to the various sequences about semiprime gaps and the merit of such gaps.
a(96) appears to be the last zero term. - T. D. Noe, Aug 12 2008

Examples

			a(0) = 0 because there are no semiprimes between 0 and 0+sqrt(0) = 0.
a(2) = 0 because there are no semiprimes between 2 and 2+sqrt(2) = 3.414...
a(3) = 1 as the semiprime 4 falls between 3 and 3 + sqrt(3) = 4.732...
a(5) = 1 as the semiprime 6 falls between 5 and 5 + sqrt(5) = 7.236...
		

Crossrefs

Programs

  • Mathematica
    SemiPrimeQ[n_] := TrueQ[Plus@@Last/@FactorInteger[n]==2]; Table[hi=n+Sqrt[n]; If[IntegerQ[hi], hi--, hi=Floor[hi]]; Length[Select[Range[n+1,hi], SemiPrimeQ]], {n,0,150}] (* T. D. Noe, Aug 12 2008 *)
  • Perl
    use ntheory ":all"; print "$ ",semiprime_count($+1, $+sqrtint($)-($ && is_square($))),"\n" for 0..1000; # Dana Jacobsen, Mar 04 2019

Formula

a(n) = card{S such that S is an element of A001358 and n < S < n + n^(1/2)}.

Extensions

Corrected and extended by T. D. Noe, Aug 12 2008

A114405 5-almost prime gaps. First differences of A014614.

Original entry on oeis.org

16, 24, 8, 28, 4, 8, 42, 6, 8, 4, 20, 8, 35, 9, 12, 6, 2, 8, 20, 4, 8, 56, 10, 14, 4, 9, 3, 12, 20, 10, 6, 8, 4, 28, 4, 20, 32, 15, 21, 4, 2, 18, 4, 14, 26, 4, 15, 5, 4, 4, 8, 4, 2, 26, 16, 6, 2, 8, 20, 48, 20, 34, 6, 3, 27, 2, 4, 20, 1, 7, 16, 8, 4, 4, 6, 30, 6, 6, 12, 6, 3, 11
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Comments

First occurrences of a(n)=1,2,3,.. are at n=69, 17, 27, 5, 48, 8, 70, 3, 14, 23, 82, 15, 150, 24, 38, 1, 172, 42, 258, 11, 39, 135, 102, 2, 779, 45, 65, 4, 518, 76, 263, 37, 211, 62, 13, 1009, 2463, 606, 254, 151, 3348, 7, 4513,... - R. J. Mathar, Oct 06 2007

Examples

			a(1) = 16 = 48-32 where 32 is the first 5-almost prime and 48 is the second.
a(2) = 24 = 72-48.
a(3) = 8 = 80-72.
a(4) = 28 = 108-80.
a(5) = 4 = 112-108.
a(6) = 8 = 120-112.
a(7) = 42 = 162-120.
a(8) = 6 = 168-162.
a(13) = 35 = 243-208.
a(22) = 56 = 368-312.
		

Crossrefs

Programs

  • Mathematica
    Differences[Select[Range[2000],PrimeOmega[#]==5&]] (* Harvey P. Dale, Sep 28 2019 *)

Formula

a(n) = A014614(n+1) - A014614(n).

Extensions

More terms from R. J. Mathar, Oct 06 2007

A114414 Records in 4-almost prime gaps ordered by merit.

Original entry on oeis.org

8, 12, 14, 21, 28
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Comments

Next term (if it exists) associated with A014613 > 1030000. - R. J. Mathar, Mar 13 2007

Examples

			Records defined in terms of A114404 and A014613:
  n  A114404(n)  A114404(n)/log_10(A014613(n))
  =  ==========  =============================
  1      8       8/log_10(16)   = 6.64385619
  2      12      12/log_10(24)  = 8.6943213
  3      4       4/log_10(36)   = 2.57019442
  4      14      14/log_10(40)  = 8.73874891
  5      2       2/log_10(54)   = 1.15447195
  6      4       4/log_10(56)   = 2.2880834
  7      21      21/log_10(60)  = 11.810019
  ...
  13     22      22/log_10(104) = 10.9071078
  ...
  21     28      28/log_10(156) = 12.7671725
		

Crossrefs

Programs

  • Maple
    Digits := 16 : A114414 := proc() local n,a014613,a114414,rec ; a014613 := 16 ; a114414 := 8 ; rec := a114414/log(a014613) ; print(a114414) ; n := 17 ; while true do while numtheory[bigomega](n) <> 4 do n := n+1 ; od ; a114414 := n-a014613 ; if ( evalf(a114414/log(a014613)) > evalf(rec) ) then rec := a114414/log(a014613) ; print(a114414) ; fi ; a014613 := n ; n := n+1 : od ; end: A114414() ; # R. J. Mathar, Mar 13 2007

Formula

a(n) = records in A114404(n)/log_10(A014613(n)) = records in (A014613(n+1) - A014613(n))/log_10(A014613(n)).

A114057 Start of record gap in odd semiprimes A046315.

Original entry on oeis.org

9, 25, 39, 95, 267, 2369, 6559, 8817, 13705, 15261, 21583, 35981, 66921, 113009, 340891, 783757, 872219, 3058853, 3586843, 5835191, 12345473, 108994623, 248706917, 268749691, 679956119, 709239621, 3648864859, 3790337723, 4171420481, 33955869693, 34279038379
Offset: 1

Views

Author

Jonathan Vos Post, Feb 02 2006

Keywords

Comments

3 of the first 5 values of record gaps in odd semiprimes are also record merits = (A046315(k+1)-A046315(k))/log_10(A046315(k)), namely: (15 - 9) / log_10(9) = 6.28770982; (111 - 95) / log_10(95) = 8.09010923; (287 - 267) / log_10(267) = 8.24228608. It is easy to prove that there are gaps of arbitrary length in even semiprimes (A100484); can we prove that there are gaps of arbitrary length in odd semiprimes (A046315) and in semiprimes (A001358)?
The record gaps have lengths 6, 8, 10, 16, 20, 22, 24, 26, 28, 32, 36, 38, 40, 44, 50, 52, 60, 64, 70, 74. - T. D. Noe, Feb 03 2006

Examples

			a(1) = A046315(2)-A046315(1) = 15 - 9 = 6.
a(2) = A046315(5)-A046315(4) = 33 - 25 = 8.
a(3) = A046315(8)-A046315(7) = 49 - 39 = 10.
a(4) = A046315(20)-A046315(19) = 111 - 95 = 16.
a(5) = A046315(55)-A046315(54) = 287 - 267 = 20.
		

Crossrefs

Starting at a(4)=95 the known terms of this sequence coincide with A350098.

Programs

  • Mathematica
    f[n_] := Block[{k = n + 2}, While[ Plus @@ Last /@ FactorInteger@k != 2, k += 2]; k]; lst = {}; d = 0; a = b = 9; Do[{a, b} = {b, f[a]}; If[b - a > d, d = b - a; AppendTo[lst, a]], {n, 10^8}]; lst (* Robert G. Wilson v, Feb 03 2006 *)

Formula

{a(n)} = {A046315(k) such that A046315(k+1)-A046315(k) is a record}.

Extensions

More terms from Robert G. Wilson v and T. D. Noe, Feb 03 2006
a(23)-a(28) from Donovan Johnson, Mar 14 2010
a(29)-a(31) from Donovan Johnson, Oct 20 2012

A114404 4-almost prime gaps. First differences of A014613.

Original entry on oeis.org

8, 12, 4, 14, 2, 4, 21, 3, 4, 2, 10, 4, 22, 6, 3, 1, 4, 10, 2, 4, 28, 5, 7, 2, 6, 6, 10, 5, 3, 4, 2, 14, 2, 10, 16, 18, 2, 1, 9, 2, 7, 13, 2, 10, 2, 2, 4, 2, 1, 13, 8, 3, 1, 4, 10, 24, 10, 17, 3, 15, 1, 2, 10, 4, 8, 4, 2, 2, 3, 15, 3, 3, 6, 3, 7, 4, 10, 4, 8, 6, 4, 2, 2, 8, 4, 1, 35, 1, 4, 7, 4, 8, 6
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 8 = 24-16 where 16 is the first 4-almost prime and 24 is the second.
a(2) = 12 = 36-24.
a(3) = 4 = 40-36.
a(4) = 14 = 54-40.
a(5) = 2 = 56-54.
a(6) = 4 = 60-56.
a(7) = 21 = 81-60.
a(13) = 22 = 126-104.
a(21) = 28 = 184-156.
		

Crossrefs

Programs

  • Maple
    A114404 := proc(nmax) local a,i,a014613 ; a := [] ; i := 1 ; a014613 := -1 ; while nops(a) < nmax do if numtheory[bigomega](i) = 4 then if a014613 > 0 then a := [op(a),i-a014613] ; fi ; a014613 := i ; fi ; i := i+1 ; end: a ; end: A114404(200) ; # R. J. Mathar, May 10 2007
  • Mathematica
    Differences[Select[Range[800],Total[FactorInteger[#][[All,2]]]==4&]] (* Harvey P. Dale, Feb 14 2017 *)
    Select[Range[1000],PrimeOmega[#]==4&]//Differences (* Harvey P. Dale, May 12 2018 *)

Formula

a(n) = A014613(n+1) - A014613(n).

Extensions

Corrected and extended by R. J. Mathar, May 10 2007

A114406 6-almost prime gaps. First differences of A046306.

Original entry on oeis.org

32, 48, 16, 56, 8, 16, 84, 12, 16, 8, 40, 16, 70, 18, 24, 12, 4, 16, 40, 8, 16, 105, 7, 20, 28, 8, 18, 6, 24, 40, 20, 12, 16, 8, 56, 8, 40, 64, 30, 42, 8, 4, 27, 9, 8, 28, 52, 8, 30, 10, 8, 8, 16, 8, 4, 52, 32, 12, 4, 16, 40, 96, 40, 5, 63, 12, 6, 54, 4, 8, 40, 2, 14, 32, 16, 8, 8, 12, 45
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 32 = 96-64 where 64 is the first 6-almost prime and 96 is the second.
a(2) = 48 = 144-96.
a(3) = 16 = 160-144.
a(4) = 56 = 216-160.
a(5) = 8 = 224-216.
a(6) = 16 = 240-224.
a(7) = 84 = 324-240.
a(8) = 12 = 336-324.
a(22) = 105 = 729-624.
		

Crossrefs

Formula

a(n) = A046306(n+1) - A046306(n).

Extensions

More terms from R. J. Mathar, Aug 31 2007

A114407 7-almost prime gaps. First differences of A046308.

Original entry on oeis.org

64, 96, 32, 112, 16, 32, 168, 24, 32, 16, 80, 32, 140, 36, 48, 24, 8, 32, 80, 16, 32, 210, 14, 40, 56, 16, 36, 12, 48, 80, 40, 24, 32, 16, 112, 16, 80, 107, 21, 60, 84, 16, 8, 54, 18, 16, 56, 104, 16, 60, 20, 16, 16, 32, 16, 8, 104, 64, 24, 8, 32, 80, 192, 80, 10, 126, 24, 12
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 64 = 192-128 where 128 is the first 7-almost prime and 192 is the second.
a(2) = 96 = 288-192.
a(3) = 32 = 320-288.
a(4) = 112 = 432-320.
a(5) = 16 = 448-432.
a(6) = 32 = 480-448.
a(7) = 168 = 648-480.
a(8) = 24 = 672-648.
		

Crossrefs

Programs

  • Mathematica
    Differences[Select[Range[10000],PrimeOmega[#]==7&]] (* Harvey P. Dale, Oct 13 2019 *)

Formula

a(n) = A046308(n+1) - A046308(n).

Extensions

Corrected and extended by R. J. Mathar, Aug 31 2007

A114408 8-almost prime gaps. First differences of A046310.

Original entry on oeis.org

128, 192, 64, 224, 32, 64, 336, 48, 64, 32, 160, 64, 280, 72, 96, 48, 16, 64, 160, 32, 64, 420, 28, 80, 112, 32, 72, 24, 96, 160, 80, 48, 64, 32, 224, 32, 160, 214, 42, 120, 168, 32, 16, 108, 36, 32, 112, 208, 32, 120, 40, 32, 32, 64, 32, 16, 208, 128, 48
Offset: 1

Views

Author

Jonathan Vos Post, Dec 03 2005

Keywords

Examples

			a(1) = 128 = 384-256 = A046310(2) - A046310(1).
a(2) = 192 = 576-384.
a(3) = 64 = 640-576.
a(4) = 224 = 864-640.
a(5) = 32 = 896-864.
a(6) 64 = 960-896.
a(7) = 336 = 1296-960.
a(8) = 48 = 1344-1296.
a(22) = 420 = 2916-2496.
		

Crossrefs

Formula

a(n) = A046310(n+1) - A046310(n).

A114415 Records in 5-almost prime gaps ordered by merit.

Original entry on oeis.org

16, 24, 28, 42, 56, 70
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Comments

Next term, if it exists, is associated with indices above 100000 in A114405 and A014614. - R. J. Mathar, May 10 2007

Examples

			Records defined in terms of A114405 and A014614:
  n  A114405(n)  A114405(n)/log_10(A014614(n))
  =  ==========  =============================
  1      16      16/log_10(32)  = 10.6301699
  2      24      24/log_10(48)  = 14.2751673
  3      8       8/log_10(72)   = 4.30725248
  4      28      28/log_10(80)  = 14.7129144
  5      4       4/log_10(108)  = 1.96712564
  6      8       8/log_10(112)  = 3.90392819
  7      42      42/log_10(120) = 20.2002592
  8      6       6/log_10(168)  = 2.69625443
  ...
  22     56      56/log_10(312) = 22.4524976
		

Crossrefs

Programs

  • Maple
    A014614 := proc(nmax) local a,i; a := [] ; i := 1 ; while nops(a) < nmax do if numtheory[bigomega](i) = 5 then a := [op(a),i] ; fi ; i := i+1 ; end: a ; end: A114405 := proc(a014614) local a,i; a := [] ; for i from 2 to nops(a014614) do a := [op(a), op(i,a014614)-op(i-1,a014614)] ; od ; a ; end: a014614 := A014614(100000) : a114405 := A114405(a014614) : Digits := 30 : rec := -1 : for i from 1 to nops(a114405) do if evalf(a114405[i]/log(a014614[i])) > rec then printf("%d, ",a114405[i]) ; rec := evalf(a114405[i]/log(a014614[i])) ; fi ; od ; # R. J. Mathar, May 10 2007

Formula

a(n) = records in A114405(n)/log_10(A014614(n)) = records in (A014614(n+1) - A014614(n))/log_10(A014614(n)).

Extensions

a(6) from R. J. Mathar, May 10 2007
Showing 1-10 of 15 results. Next