A111901 Number of partitions of n into parts that are primes or squares of primes.
1, 0, 1, 1, 2, 2, 3, 4, 5, 7, 8, 11, 13, 17, 20, 25, 30, 37, 44, 53, 63, 75, 89, 105, 123, 145, 169, 197, 229, 266, 307, 355, 408, 469, 538, 615, 703, 801, 912, 1035, 1175, 1330, 1504, 1698, 1914, 2155, 2423, 2721, 3051, 3418, 3824, 4273, 4770, 5319, 5925
Offset: 0
Keywords
Examples
G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 8*x^10 + ... a(10) = #{ 7+3, 5+5, 5+3+2, 2^2+2^2+2, 2^2+3+3, 2^2+2+2+2, 3+3+2+2, 2+2+2+2+2 } = 8.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add( `if`(tau(d) in [2, 3], d, 0), d=divisors(j)), j=1..n)/n) end: seq(a(n), n=0..60); # Alois P. Heinz, Mar 30 2017
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j]*DivisorSum[j, If[2 <= DivisorSigma[0, #] <= 3, #, 0]&], {j, 1, n}]/n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 06 2017, after Alois P. Heinz *)
-
PARI
{a(n) = if(n < 0, 0, polcoeff( 1 / prod(k=1, primepi(n), (1 - x^prime(k)^2 + x*O(x^n)) * (1 - x^prime(k))), n))}; /* Michael Somos, Dec 26 2016 */
Formula
G.f.: Product_{k>=1} 1/((1 - x^prime(k))*(1 - x^(prime(k)^2))). - Ilya Gutkovskiy, Dec 26 2016