cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111901 Number of partitions of n into parts that are primes or squares of primes.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 5, 7, 8, 11, 13, 17, 20, 25, 30, 37, 44, 53, 63, 75, 89, 105, 123, 145, 169, 197, 229, 266, 307, 355, 408, 469, 538, 615, 703, 801, 912, 1035, 1175, 1330, 1504, 1698, 1914, 2155, 2423, 2721, 3051, 3418, 3824, 4273, 4770, 5319, 5925
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 8*x^10 + ...
a(10) = #{ 7+3, 5+5, 5+3+2, 2^2+2^2+2, 2^2+3+3, 2^2+2+2+2, 3+3+2+2, 2+2+2+2+2 } = 8.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
         `if`(tau(d) in [2, 3], d, 0), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 30 2017
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j]*DivisorSum[j, If[2 <= DivisorSigma[0, #] <= 3, #, 0]&], {j, 1, n}]/n];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 06 2017, after Alois P. Heinz *)
  • PARI
    {a(n) = if(n < 0, 0, polcoeff( 1 / prod(k=1, primepi(n), (1 - x^prime(k)^2 + x*O(x^n)) * (1 - x^prime(k))), n))}; /* Michael Somos, Dec 26 2016 */

Formula

G.f.: Product_{k>=1} 1/((1 - x^prime(k))*(1 - x^(prime(k)^2))). - Ilya Gutkovskiy, Dec 26 2016