cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111910 Square array read by antidiagonals: S(p,q) = (p+q+1)!(2p+2q+1)!/((p+1)!(2p+1)!(q+1)!(2q+1)!) (p,q>=0).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 14, 14, 1, 1, 30, 84, 30, 1, 1, 55, 330, 330, 55, 1, 1, 91, 1001, 2145, 1001, 91, 1, 1, 140, 2548, 10010, 10010, 2548, 140, 1, 1, 204, 5712, 37128, 68068, 37128, 5712, 204, 1, 1, 285, 11628, 116280, 352716, 352716, 116280, 11628, 285, 1
Offset: 0

Views

Author

Emeric Deutsch, Aug 19 2005

Keywords

Examples

			Array S(n,k) in rectangular form (n, k >= 0):
  1,  1,    1,     1,    1,       1,       1,       1,        1, ...
  1,  5,   14,    30,   55,      91,     140,     204,      285, ...
  1, 14,   84,   330,  1001,   2548,    5712,   11628,    21945, ...
  1, 30,  330,  2145, 10010,  37128,  116280,  319770,   793155, ...
  1, 55, 1001, 10010, 68068, 352716, 1492260, 5393454, 17185025, ...
  ...
Array T(n,k) in triangular form (n >= 0 and 0 <= k <= n):
  1,
  1,  1,
  1,  5,    1,
  1, 14,   14,   1,
  1, 30,   84,  30,     1,
  1, 55,  330, 330,    55,  1,
  1, 91, 1001, 2145, 1001, 91, 1,
  ...
		

Crossrefs

Cf. A091044, A111911 (main diagonal), A196148 (row sums of triangle).

Programs

  • Magma
    T:= func< n,k | Binomial(n+1, k)*Binomial(2*n+1, 2*k)/((k+1)*(2*k+1)) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021
  • Maple
    a:=(p,q)->(p+q+1)!*(2*p+2*q+1)!/(p+1)!/(2*p+1)!/(q+1)!/(2*q+1)!: for n from 0 to 10 do seq(a(j,n-j),j=0..n) od; # yields sequence in triangular form
  • Mathematica
    Table[(# + q + 1)! (2 # + 2 q + 1)!/((# + 1)! (2 # + 1)! (q + 1)! (2 q + 1)!) &[r - q], {r, 0, 9}, {q, 0, r}] // Flatten (* Michael De Vlieger, Oct 21 2019 *)
    Table[Binomial[n+1, k]*Binomial[2*n+1, 2*k]/((k+1)*(2*k+1)), {n, 0, 12}, {k, 0,
    n}]//Flatten (* G. C. Greubel, Feb 12 2021 *)
  • Sage
    def A111910(n,k): return binomial(n+1, k)*binomial(2*n+1, 2*k)/((k+1)*(2*k+1))
    flatten([[A111910(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021
    

Formula

S(n,n) = A111911(n).
From Peter Bala, Oct 13 2011: (Start)
Define a(n) = n!*(n+1/2)!*(n+1)!/(1/2)!.
S(n,k) = a(n+k)/(a(n)*a(k)) gives the sequence as a square array while T(n,k) = a(n)/(a(n-k)*a(k)) gives the sequence as a triangle.
S(n-1,k)*S(n,k+1)*S(n+1,k-1) = S(n-1,k+1)*S(n,k-1)*S(n+1,k). Cf. A091044.
(End)
From G. C. Greubel, Feb 12 2021: (Start)
As a number triangle:
T(n, k) = binomial(n+1, k)*binomial(2*n+1, 2*k)/((k+1)*(2*k+1)).
T(n, k) = binomial(2*n+1, 2*k)/((2*k+1)*binomial(n, k)) * A001263(n+1, k+1). (End)
From Peter Bala, Sep 19 2021: (Start)
As a triangle: T(n,k) = a(n)/(a(n-k)*a(k)), where a(n) = Product_{j = 1..n} s(p,j) with s(p,j) = Sum_{j = 1..n} j^p and p = 2. Note, p = 0 gives Pascal's triangle A007318, p = 1 gives the triangle of Narayana numbers A001263 and p = 3 gives the triangle A174158 whose entries are the squares of the Narayana numbers.
Let E(y) = Sum_{n >= 0} y^n/((n+1)!*(2*n+1)!). Then as a triangle this is the generalized Riordan array (E(y), y) as defined in Wang and Wang with respect to the sequence c_n = (n+1)!*(2*n+1)!. Cf. A001263.
Generating function: E(y)*E(x*y) = 1 + (1 + x)*y/(2!*3!) + (1 + 5*x + x^2)*y^2/(3!*5!) + (1 + 14*x + 14*x^2 + x^3)*y^3/(4!*7!) + ....
The n-th power of this array has a generating function E(y)^n*E(x*y). In particular, the matrix inverse has a generating function E(x*y)/E(y).
exp(y)*E(y) = 1 + 13*y/(2!*3!) + 421*y^2/(3!*5!) + 25368*y^3/(4!*7!) + ... is essentially a generating function for A081442. (End)

Extensions

Example section edited by Petros Hadjicostas, Sep 03 2019