A111927 Expansion of x^3 / ((x-1)*(2*x-1)*(x^2-x+1)).
0, 0, 0, 1, 4, 10, 21, 42, 84, 169, 340, 682, 1365, 2730, 5460, 10921, 21844, 43690, 87381, 174762, 349524, 699049, 1398100, 2796202, 5592405, 11184810, 22369620, 44739241, 89478484, 178956970, 357913941, 715827882, 1431655764, 2863311529, 5726623060
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Antoine-Augustin Cournot, Solution d'un problème d'analyse combinatoire, Bulletin des Sciences Mathématiques, Physiques et Chimiques, item 34, volume 11, 1829, pages 93-97. Also at Google Books. Page 97 case p=3 formula y^(0) = a(n). (But misprint "- (2/3)*cos" should be "+ (2/3)*cos".)
- R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arXiv:0903.2514 [math.NT], 2009-2011.
- Christian Ramus, Solution générale d'un problème d'analyse combinatoire, Journal für die Reine und Angewandte Mathematik (Crelle's journal), volume 11, 1834, pages 353-355. Page 353 case p=3 formula y^(0) = a(n). (But misprint "+ (1/3)*cos" should be "+ (2/3)*cos", per the general case equation A page 354.)
- Kevin Ryde, Iterations of the Terdragon Curve, section Lines, quantity Lines_k(2) = a(k+1).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,5,-2).
Programs
-
Maple
seq(sum(binomial(n, k*3), k=1..n), n=0..33); # Zerinvary Lajos, Oct 23 2007
-
Mathematica
LinearRecurrence[{4,-6,5,-2},{0,0,0,1},40] (* Harvey P. Dale, Jul 04 2017 *)
-
PARI
concat(vector(3), Vec(x^3/((x-1)*(2*x-1)*(x^2-x+1)) + O(x^40))) \\ Colin Barker, Feb 10 2017
Formula
a(n+2) - a(n+1) + a(n) = A000225(n).
a(n) - a(n-1) = A024495(n-1).
From Colin Barker, Feb 10 2017: (Start)
a(n) = 2^n/3 + 2*cos((Pi*n)/3)/3 - 1. [Cournot]
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 2*a(n-4) for n > 3. (End)
a(n) = (2^n+A087204(n))/3 - 1. - R. J. Mathar, Aug 07 2017
a(n) = (1/3)*Sum_{k=0..n-1} binomial(n, 3*floor(k/3)+3). - Taras Goy, Jan 26 2025
E.g.f.: (exp(x)*(exp(x) - 3) + 2*exp(x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Feb 06 2025
Comments