cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111927 Expansion of x^3 / ((x-1)*(2*x-1)*(x^2-x+1)).

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 21, 42, 84, 169, 340, 682, 1365, 2730, 5460, 10921, 21844, 43690, 87381, 174762, 349524, 699049, 1398100, 2796202, 5592405, 11184810, 22369620, 44739241, 89478484, 178956970, 357913941, 715827882, 1431655764, 2863311529, 5726623060
Offset: 0

Views

Author

Creighton Dement, Aug 21 2005

Keywords

Comments

Binomial transform of sequence (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0). Note: the binomial transform of the sequence (0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0) is A111926; the binomial transform of the sequence (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0) is A024495 (disregarding first two terms, which are both zero).
The sequence relates the calculation of the logarithm of the Twin Prime Constants of order 3 to the sequence of prime zeta functions, see definition 7 in arXiv:0903.2514. - R. J. Mathar, Mar 28 2009

Crossrefs

Programs

  • Maple
    seq(sum(binomial(n, k*3), k=1..n), n=0..33); # Zerinvary Lajos, Oct 23 2007
  • Mathematica
    LinearRecurrence[{4,-6,5,-2},{0,0,0,1},40] (* Harvey P. Dale, Jul 04 2017 *)
  • PARI
    concat(vector(3), Vec(x^3/((x-1)*(2*x-1)*(x^2-x+1)) + O(x^40))) \\ Colin Barker, Feb 10 2017

Formula

a(n+2) - a(n+1) + a(n) = A000225(n).
a(n) - a(n-1) = A024495(n-1).
From Colin Barker, Feb 10 2017: (Start)
a(n) = 2^n/3 + 2*cos((Pi*n)/3)/3 - 1. [Cournot]
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 2*a(n-4) for n > 3. (End)
a(n) = (2^n+A087204(n))/3 - 1. - R. J. Mathar, Aug 07 2017
a(n) = (1/3)*Sum_{k=0..n-1} binomial(n, 3*floor(k/3)+3). - Taras Goy, Jan 26 2025
E.g.f.: (exp(x)*(exp(x) - 3) + 2*exp(x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Feb 06 2025