A112010 Numbers m with even length such that phi(m)=phi(d_1^d_2*d_3^d_4*...* d_(k-1)^d_k) where d_1 d_2 ... d_k is the decimal expansion of m.
24, 1064, 2592, 6520, 106434, 145166, 237165, 262535, 372780, 491520, 531765, 546410, 566250, 636352, 12716544, 12806910, 13666320, 15116832, 15408692, 17473715, 21645616, 23473515, 23726640, 23728264, 26722436, 26757024, 27933192, 30537364, 30869280, 32118177, 33452293, 34114338, 39602752, 42262365, 44373490
Offset: 1
Examples
33452293 is in the sequence because phi(33452293)=phi(3^3*4^5*2^2*9^3).
Programs
-
Mathematica
Do[h = IntegerDigits[n]; k = Length[h]; If[EvenQ[k] && Select[ Range[k/2], h[[2#-1]] == 0 &] == {} && EulerPhi[n]==EulerPhi [Product[h[[2j-1]]^h[[2j]], {j, k/2}]], Print[n]], {n, 31000000}] epQ[n_]:=Module[{idn=IntegerDigits[n]},EvenQ[Length[idn]]&& FreeQ[ Take[ idn, {1,-1,2}],0] && EulerPhi[n] == EulerPhi[Times@@(#[[1]]^#[[2]]&/@ Partition[ idn,2])]]; Join[Select[Range[10,99],epQ],Select[Range[ 1000,9999], epQ], Select[Range[100000,999999],epQ], Select[Range[ 10000000, 44999999], epQ]] (* Harvey P. Dale, Feb 24 2016 *)
Extensions
More terms from Max Alekseyev, Oct 16 2012