cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112010 Numbers m with even length such that phi(m)=phi(d_1^d_2*d_3^d_4*...* d_(k-1)^d_k) where d_1 d_2 ... d_k is the decimal expansion of m.

Original entry on oeis.org

24, 1064, 2592, 6520, 106434, 145166, 237165, 262535, 372780, 491520, 531765, 546410, 566250, 636352, 12716544, 12806910, 13666320, 15116832, 15408692, 17473715, 21645616, 23473515, 23726640, 23728264, 26722436, 26757024, 27933192, 30537364, 30869280, 32118177, 33452293, 34114338, 39602752, 42262365, 44373490
Offset: 1

Views

Author

Farideh Firoozbakht, Aug 26 2005

Keywords

Examples

			33452293 is in the sequence because phi(33452293)=phi(3^3*4^5*2^2*9^3).
		

Crossrefs

Programs

  • Mathematica
    Do[h = IntegerDigits[n]; k = Length[h]; If[EvenQ[k] && Select[ Range[k/2], h[[2#-1]] == 0 &] == {} && EulerPhi[n]==EulerPhi [Product[h[[2j-1]]^h[[2j]], {j, k/2}]], Print[n]], {n, 31000000}]
    epQ[n_]:=Module[{idn=IntegerDigits[n]},EvenQ[Length[idn]]&& FreeQ[ Take[ idn, {1,-1,2}],0] && EulerPhi[n] == EulerPhi[Times@@(#[[1]]^#[[2]]&/@ Partition[ idn,2])]]; Join[Select[Range[10,99],epQ],Select[Range[ 1000,9999], epQ], Select[Range[100000,999999],epQ], Select[Range[ 10000000, 44999999], epQ]] (* Harvey P. Dale, Feb 24 2016 *)

Extensions

More terms from Max Alekseyev, Oct 16 2012