cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112032 Denominator of 3/4 + 1/4 - 3/8 - 1/8 + 3/16 + 1/16 - 3/32 - 1/32 + 3/64 ...

Original entry on oeis.org

4, 1, 8, 2, 16, 4, 32, 8, 64, 16, 128, 32, 256, 64, 512, 128, 1024, 256, 2048, 512, 4096, 1024, 8192, 2048, 16384, 4096, 32768, 8192, 65536, 16384, 131072, 32768, 262144, 65536, 524288, 131072, 1048576, 262144, 2097152, 524288, 4194304, 1048576
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 27 2005

Keywords

Comments

Denominator of partial sums of A112030(n)/A016116(n+4), numerators = A112031;
A112031(n)/a(n) - 2/3 = (-1)^floor(n/2) / A112033(n);
lim_{n->infinity} A112031(n)/a(n) = 2/3.

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 4, Sect. 1, Problem 148.

Crossrefs

Programs

  • Magma
    [2^(Floor(n/2) + 1 + (-1)^n): n in [0..50]]; // Vincenzo Librandi, Aug 17 2011
    
  • Mathematica
    LinearRecurrence[{0,2},{4,1},50] (* following conjecture in Formula field above *) (* Harvey P. Dale, Dec 21 2014 *)
  • PARI
    m=50; v=concat([4,1], vector(m-2)); for(n=3, m, v[n]=2*v[n-2]); v \\ G. C. Greubel, Nov 08 2018

Formula

a(n) = 2^(floor(n/2) + 1 + (-1)^n) = 2^A084964(n).
Conjectures from Colin Barker, Apr 05 2013: (Start)
a(n) = 2*a(n-2).
G.f.: (x+4) / (1-2*x^2). (End)

Extensions

a(21) corrected by Vincenzo Librandi, Aug 17 2011