A112032 Denominator of 3/4 + 1/4 - 3/8 - 1/8 + 3/16 + 1/16 - 3/32 - 1/32 + 3/64 ...
4, 1, 8, 2, 16, 4, 32, 8, 64, 16, 128, 32, 256, 64, 512, 128, 1024, 256, 2048, 512, 4096, 1024, 8192, 2048, 16384, 4096, 32768, 8192, 65536, 16384, 131072, 32768, 262144, 65536, 524288, 131072, 1048576, 262144, 2097152, 524288, 4194304, 1048576
Offset: 0
References
- G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 4, Sect. 1, Problem 148.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- Index entries for linear recurrences with constant coefficients, signature (0,2).
Programs
-
Magma
[2^(Floor(n/2) + 1 + (-1)^n): n in [0..50]]; // Vincenzo Librandi, Aug 17 2011
-
Mathematica
LinearRecurrence[{0,2},{4,1},50] (* following conjecture in Formula field above *) (* Harvey P. Dale, Dec 21 2014 *)
-
PARI
m=50; v=concat([4,1], vector(m-2)); for(n=3, m, v[n]=2*v[n-2]); v \\ G. C. Greubel, Nov 08 2018
Formula
a(n) = 2^(floor(n/2) + 1 + (-1)^n) = 2^A084964(n).
Conjectures from Colin Barker, Apr 05 2013: (Start)
a(n) = 2*a(n-2).
G.f.: (x+4) / (1-2*x^2). (End)
Extensions
a(21) corrected by Vincenzo Librandi, Aug 17 2011
Comments