cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A130549 Numerators of partial sums for a series for 2*Zeta(2)/3 = (Pi^2)/9.

Original entry on oeis.org

1, 13, 197, 1105, 9211, 130277, 82987349, 331950131, 16929464521, 29241805241, 3538258509761, 6259995854281, 1057939300471201, 1057939300716589, 51133732870640471, 372975463296151087, 107789908892879155343
Offset: 1

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

Denominators are given in A130550.
The r(n) = 2*Sum_{j = 1..n} 1/(j^2*binomial(2*j,j)) tend, for n -> infinity, to 2*Zeta(2)/3 = (Pi^2)/9, which is approximately 1.096622711.
A related result is zeta(2) = 3*Sum_{j = 1..n} 1/(j^2*binomial(2*j,j)) + n!^4/(2*n)!*Sum_{j >= 1} 1/( Product_{i = 0..n} (j + i)^2 ) valid for n >= 0. See Wilf, equation 5, p. 191. - Peter Bala, Oct 30 2023

Examples

			Rationals r(n): [1, 13/12, 197/180, 1105/1008, 9211/8400, 130277/118800, ...].
r(3) = 1/(1 - 1/(13 - 48/(34))) = 197/180. - _Peter Bala_, Feb 17 2024
		

References

  • L. Berggren, T. Borwein and P. Borwein, Pi: A Source Book, Springer, New York, 1997, p. 687.
  • A. van der Poorten, A proof that Euler missed..., reprinted in Pi: A Source Book, pp. 439-447, eq. 2', with a hint for the proof in footnote 4.

Crossrefs

Programs

  • Maple
    seq(numer(add(2/(k^2*binomial(2*k, k)), k = 1 .. n)), n = 1 .. 17); # Peter Bala, Mar 03 2015
  • Mathematica
    Table[2*Sum[1/(i^2*Binomial[2*i, i]), {i, 1, n}], {n, 1, 20}] // Numerator
    Accumulate[Table[1/(n^2 Binomial[2n,n]),{n,20}]]//Numerator (* Harvey P. Dale, Jan 27 2019 *)
  • PARI
    a(n) = numerator(2*sum(i=1, n, 1/(i^2*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016

Formula

a(n) = numerator(r(n)), n>=1, with the rationals r(n) defined above.
Numerator of 2*Sum_{i=1..n} 1/(i^2*C(2*i,i)). - Wolfdieter Lang, Oct 07 2008; edited by Michel Marcus, Mar 10 2016
a(n) = A112093(n) for n >= 2. - Georg Fischer, Nov 03 2018
From Peter Bala, Feb 17 2024: (Start)
The sequences {(2*n)! : n >= 1} and {(2*n)!*r(n) : n >= 1} satisfy the same second-order recurrence u(n) = (5*n^2 - 4*n + 1)*u(n-1) - 2*(n - 1)^3*(2*n - 3)*u(n-2) leading to the continued fraction representations r(n) = 1/(1 - 1/(13 - 48/(34 - 270/(65 - ... - 2*(2*n - 3)*(n - 1)^3/(5*n^2 - 4*n + 1 ))))) and Pi^2/9 = 1/(1 - 1/(13 - 48/(34 - 270/(65 - ... - 2*(2*n - 3)*(n - 1)^3/((5*n^2 - 4*n + 1) - ... ))))). (End)

A130550 Denominators of partial sums for a series for 2*Zeta(2)/3 = (Pi^2)/9.

Original entry on oeis.org

1, 12, 180, 1008, 8400, 118800, 75675600, 302702400, 15437822400, 26665329600, 3226504881600, 5708431713600, 964724959598400, 964724959598400, 46628373047256000, 340112838697632000, 98292610383615648000
Offset: 1

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

Numerators are given in A130549.
For the rationals r(n):= 2*sum(1/(j^2*binomial(2*j,j)),j=1..n), n>=1, the van der Poorten reference and a W. Lang link see A130551.

Crossrefs

Programs

  • Mathematica
    Table[2*Sum[1/(i^2*Binomial[2*i, i]), {i, 1, n}], {n, 1, 20}] // Denominator (* Vaclav Kotesovec, Mar 10 2016 *)
    (2Accumulate[Table[1/(n^2 Binomial[2n,n]),{n,20}]])//Denominator (* Harvey P. Dale, Jan 27 2019 *)
  • PARI
    a(n) = denominator(2*sum(i=1, n, 1/(i^2*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016

Formula

a(n) = denominator(r(n)), n>=1.
Denominator of 2*Sum_{i=1..n} 1/(i^2*C(2*i,i)). - Wolfdieter Lang, Oct 07 2008, corrected by Vaclav Kotesovec, Mar 10 2016

A112100 Denominator of Sum_{i=1..n} 1/(i*C(2*i,i)).

Original entry on oeis.org

1, 2, 12, 5, 280, 2520, 220, 120120, 144144, 1361360, 25865840, 77597520, 22881320, 371821450, 11473347600, 9242418900, 6876359661600, 20629078984800, 281488407200, 118731810156960, 254425307479200, 8113340360725600, 36090376087365600, 9419588158802421600
Offset: 0

Views

Author

N. J. A. Sloane, Nov 30 2005

Keywords

Examples

			0, 1/2, 7/12, 3/5, 169/280, 1523/2520, 133/220, 72623/120120, 87149/144144, .... -> Pi*sqrt(3)/9.
		

Crossrefs

Cf. A112099.

Programs

  • Mathematica
    Table[Sum[1/(i*Binomial[2i,i]),{i,n}],{n,0,30}]//Denominator (* Harvey P. Dale, May 11 2019 *)
  • PARI
    a(n) = denominator(sum(i=1, n, 1/(i*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016

Formula

Sum_{i >= 1} 1/(i*C(2*i, i)) = Pi*sqrt(3)/9.

Extensions

Definition corrected by Wolfdieter Lang, Oct 07 2008
Showing 1-3 of 3 results.