cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A086463 Decimal expansion of Pi^2/18.

Original entry on oeis.org

5, 4, 8, 3, 1, 1, 3, 5, 5, 6, 1, 6, 0, 7, 5, 4, 7, 8, 8, 2, 4, 1, 3, 8, 3, 8, 8, 8, 8, 2, 0, 0, 8, 3, 9, 6, 4, 0, 6, 3, 1, 6, 6, 3, 3, 7, 3, 5, 5, 9, 9, 4, 7, 9, 2, 4, 5, 1, 8, 6, 0, 7, 6, 4, 5, 6, 6, 6, 9, 1, 5, 6, 8, 0, 1, 0, 6, 6, 9, 5, 7, 9, 4, 4, 5, 4, 2, 9, 6, 6, 8, 7, 3, 2, 5, 2, 9, 0, 1, 7, 6, 8
Offset: 0

Views

Author

Eric W. Weisstein, Jul 21 2003

Keywords

Comments

The sequence of repeating coefficients [1,-1,-2,-1,1,2] in the sum in the formula section, is equal to the 6th column in A191898. - Mats Granvik, Mar 19 2012

Examples

			0.548311355616075478824138388882008396406316633735...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.
  • A. Holroyd, Sharp Metastability Threshold for Two-Dimensional Bootstrap Percolation, Prob. Th. and Related Fields 125, 195-224, 2003.

Crossrefs

Programs

Formula

Sum[1/n^2/Binomial[2n,n], {n,Infinity}].
Pi^2/18 = A013661/3 = Sum[1/(i+0)^2 - 1/(i+1)^2 - 2/(i+2)^2 - 1/(i+3)^2 + 1/(i+4)^2 + 2/(i+5)^2, {i =1, 7, 13, 19, 25,.. infinity, stride of 6}]. - Mats Granvik, Mar 19 2012
Equals Sum_{k>=1} (H(k) - 2*H(2k))/((-3^k)*k). See Liu. - Michel Marcus, Feb 11 2020
Equals Sum_{k>=1} A007814(k)/k^2. - Amiram Eldar, Jul 13 2020
Equals (2/9) * Sum_{k>=0} (-1)^k*(7*k+5)*k!^3/((2*k+1)*(3*k+2)!) [Gosper 1974] - R. J. Mathar, Feb 07 2024
Continued fraction expansion: 1/(2 - 2/(13 - 48/(34 - 270/(65 - ... - 2*(2*n - 1)*n^3/(5*n^2 + 6*n + 2 - ... ))))). See A130549. - Peter Bala, Feb 16 2024

A100044 Decimal expansion of Pi^2/9.

Original entry on oeis.org

1, 0, 9, 6, 6, 2, 2, 7, 1, 1, 2, 3, 2, 1, 5, 0, 9, 5, 7, 6, 4, 8, 2, 7, 6, 7, 7, 7, 7, 6, 4, 0, 1, 6, 7, 9, 2, 8, 1, 2, 6, 3, 3, 2, 6, 7, 4, 7, 1, 1, 9, 8, 9, 5, 8, 4, 9, 0, 3, 7, 2, 1, 5, 2, 9, 1, 3, 3, 3, 8, 3, 1, 3, 6, 0, 2, 1, 3, 3, 9, 1, 5, 8, 8, 9, 0, 8, 5, 9, 3, 3, 7, 4, 6, 5, 0, 5, 8, 0, 3, 5, 3
Offset: 1

Views

Author

Eric W. Weisstein, Oct 31 2004

Keywords

Comments

The Dirichlet L-series for the principal character mod 6 (which is A120325 shifted left) evaluated at 2. - R. J. Mathar, Jul 20 2012
Equals the asymptotic mean of the abundancy index of the numbers coprime to 6 (A007310). - Amiram Eldar, May 12 2023

Examples

			1.096622711232150957648276777764...
		

References

  • F. Aubonnet, D. Guinin, and B.Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.
  • L. B. W. Jolley, Summation of Series, Dover, 1961.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/9, 10, 110][[1]] (* G. C. Greubel, Feb 17 2017 *)
  • PARI
    default(realprecision, 110); Pi^2/9 \\ G. C. Greubel, Feb 17 2017
    
  • Sage
    numerical_approx(pi^2/9, digits=120) # G. C. Greubel, Jun 02 2021

Formula

Equals 1 + (1/2)*(1/3)*(1/2) + (1/3)*(1*2)/(3*5)*(1/2)^2 + (1/4) *(1*2*3)/(3*5*7)*(1/2)^3 + .... [Jolley eq 277]
Equals 1/1^2 + 1/5^2 + 1/7^2 + 1/11^2 + 1/13^2 + 1/17^2 + .... - R. J. Mathar, Jul 20 2012
Equals 2*Sum_{n>=1} 1/(6*n*(3*n + (-1)^n - 3) - 3*(-1)^n + 5) = 2*Sum_{n>=1} 1/(2*A104777(n)). - Alexander R. Povolotsky, May 18 2014
Equals A019670^2. - Michel Marcus, May 19 2014
Equals 2*A086463 = 2*Sum_{n>=1} 1/A091999(n)^2, equivalent to the formula of 2012 above. - Alexander R. Povolotsky, May 20 2014
Equals 3F2(1,1,1; 3/2,2 ; 1/4), following from Clausen's formula of J. Reine Angew. Math 3 (1828) for squares of 2F1() as noted in A019670. - R. J. Mathar, Oct 16 2015
Equals Product_{n >= 3} prime(n)^2 / (prime(n)^2 - 1), Euler's prime product, excluding first two primes. - Fred Daniel Kline, Jun 09 2016
Equals Integral_{x=0..oo} log(x)/(x^6 - 1) dx. - Amiram Eldar, Aug 12 2020
Equals Sum_{k>=1} A000120(k) * (2*k+1)/(k^2*(k+1)^2) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021
Equals Integral_{x=0..1} log(1+x+x^2)/x dx (Aubonnet). - Bernard Schott, Feb 04 2022
Equals Sum_{k>=1} A008833(k)/k^4. - Amiram Eldar, Jan 25 2024
Continued fraction expansion: 1/(1 - 1/(13 - 48/(34 - 270/(65 - ... - 2*(2*n-1)*n^3/((5*n^2+6*n+2) - ... ))))). See A130549. - Peter Bala, Feb 16 2024
Equals Sum_{k >= 0} 1/((k + 1)*(2*k + 1)*binomial(2*k, k)). See Catalan, Section 21, equation 30. - Peter Bala, Aug 14 2024

A130550 Denominators of partial sums for a series for 2*Zeta(2)/3 = (Pi^2)/9.

Original entry on oeis.org

1, 12, 180, 1008, 8400, 118800, 75675600, 302702400, 15437822400, 26665329600, 3226504881600, 5708431713600, 964724959598400, 964724959598400, 46628373047256000, 340112838697632000, 98292610383615648000
Offset: 1

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

Numerators are given in A130549.
For the rationals r(n):= 2*sum(1/(j^2*binomial(2*j,j)),j=1..n), n>=1, the van der Poorten reference and a W. Lang link see A130551.

Crossrefs

Programs

  • Mathematica
    Table[2*Sum[1/(i^2*Binomial[2*i, i]), {i, 1, n}], {n, 1, 20}] // Denominator (* Vaclav Kotesovec, Mar 10 2016 *)
    (2Accumulate[Table[1/(n^2 Binomial[2n,n]),{n,20}]])//Denominator (* Harvey P. Dale, Jan 27 2019 *)
  • PARI
    a(n) = denominator(2*sum(i=1, n, 1/(i^2*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016

Formula

a(n) = denominator(r(n)), n>=1.
Denominator of 2*Sum_{i=1..n} 1/(i^2*C(2*i,i)). - Wolfdieter Lang, Oct 07 2008, corrected by Vaclav Kotesovec, Mar 10 2016

A112099 Numerator of Sum_{i=1..n} 1/(i*C(2*i,i)).

Original entry on oeis.org

0, 1, 7, 3, 169, 1523, 133, 72623, 87149, 823077, 15638477, 46915441, 13834041, 224803169, 6936783521, 5587964507, 4157445593923, 12472336782289, 170187831339, 71785227258967, 153825486983593, 4905323862699739, 21820233734078929, 5695081004594650211
Offset: 0

Views

Author

N. J. A. Sloane, Nov 30 2005

Keywords

Examples

			0, 1/2, 7/12, 3/5, 169/280, 1523/2520, 133/220, 72623/120120, 87149/144144, .... -> Pi*sqrt(3)/9.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Accumulate[Table[1/(x Binomial[2x,x]),{x,30}]]]//Numerator (* Harvey P. Dale, May 08 2022 *)
  • PARI
    a(n) = numerator(sum(i=1, n, 1/(i*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016

Formula

Sum_{i >= 1} 1/(i*C(2*i, i)) = Pi*sqrt(3)/9.

Extensions

Definition corrected by Wolfdieter Lang, Oct 07 2008

A134805 Denominator of Sum_{i=1..n} 1/(i^2*binomial(2*i,i)).

Original entry on oeis.org

1, 2, 24, 360, 2016, 16800, 237600, 151351200, 605404800, 30875644800, 53330659200, 6453009763200, 11416863427200, 1929449919196800, 1929449919196800, 93256746094512000, 680225677395264000, 196585220767231296000, 93119315100267456000, 1243794691794272409792000
Offset: 0

Views

Author

Wolfdieter Lang and N. J. A. Sloane, Oct 13 2008

Keywords

Comments

For this sum times 2/3 see A130549/A130550 with offset 1.

Examples

			0, 1/2, 13/24, 197/360, 1105/2016, 9211/16800, 130277/237600, 82987349/151351200, ...
		

Crossrefs

For numerators see A130549, n>=1.

Programs

  • Maple
    seq(denom(add(1/(k^2*binomial(2*k, k)), k = 1 .. n)), n = 0 .. 19); # Peter Bala, Mar 03 2015
  • Mathematica
    Join[{1},Denominator[Accumulate[Table[1/(n^2 Binomial[2n,n]),{n,20}]]]] (* Harvey P. Dale, Jun 07 2021 *)
  • PARI
    a(n) = denominator(sum(i=1, n, 1/(i^2*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016

Formula

Sum_{i >= 1} 1/(i^2*binomial(2*i, i)) = Pi^2/18.
Showing 1-5 of 5 results.