cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A019670 Decimal expansion of Pi/3.

Original entry on oeis.org

1, 0, 4, 7, 1, 9, 7, 5, 5, 1, 1, 9, 6, 5, 9, 7, 7, 4, 6, 1, 5, 4, 2, 1, 4, 4, 6, 1, 0, 9, 3, 1, 6, 7, 6, 2, 8, 0, 6, 5, 7, 2, 3, 1, 3, 3, 1, 2, 5, 0, 3, 5, 2, 7, 3, 6, 5, 8, 3, 1, 4, 8, 6, 4, 1, 0, 2, 6, 0, 5, 4, 6, 8, 7, 6, 2, 0, 6, 9, 6, 6, 6, 2, 0, 9, 3, 4, 4, 9, 4, 1, 7, 8, 0, 7, 0, 5, 6, 8
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

With an offset of zero, also the decimal expansion of Pi/30 ~ 0.104719... which is the average arithmetic area of the 0-winding sectors enclosed by a closed Brownian planar path, of a given length t, according to Desbois, p. 1. - Jonathan Vos Post, Jan 23 2011
Polar angle (or apex angle) of the cone that subtends exactly one quarter of the full solid angle. See comments in A238238. - Stanislav Sykora, Jun 07 2014
60 degrees in radians. - M. F. Hasler, Jul 08 2016
Volume of a quarter sphere of radius 1. - Omar E. Pol, Aug 17 2019
Also smallest positive zero of Sum_{k>=1} cos(k*x)/k = -log(2*|sin(x/2)|). Proof of this identity: Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i = sqrt(-1). - Jianing Song, Nov 09 2019
The area of a circle circumscribing a unit-area regular dodecagon. - Amiram Eldar, Nov 05 2020

Examples

			Pi/3 = 1.04719755119659774615421446109316762806572313312503527365831486...
From _Peter Bala_, Nov 16 2016: (Start)
Case n = 1. Pi/3 = 18 * Sum_{k >= 0} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ).
Using the methods of Borwein et al. we can find the following asymptotic expansion for the tails of this series: for N divisible by 6 there holds Sum_{k >= N/6} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ) ~ 1/N^3 + 6/N^5 + 1671/N ^7 - 241604/N^9 + ..., where the sequence [1, 0, 6, 0, 1671, 0, -241604, 0, ...] is the sequence of coefficients in the expansion of ((1/18)*cosh(2*x)/cosh(3*x)) * sinh(3*x)^2 = x^2/2! + 6*x^4/4! + 1671*x^6/6! - 241604*x^8/8! + .... Cf. A024235, A278080 and A278195. (End)
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.3, p. 489.

Crossrefs

Integral_{x=0..oo} 1/(1+x^m) dx: A013661 (m=2), A248897 (m=3), A093954 (m=4), A352324 (m=5), this sequence (m=6), A352125 (m=8), A094888 (m=10).

Programs

Formula

A third of A000796, a sixth of A019692, the square root of A100044.
Sum_{k >= 0} (-1)^k/(6k+1) + (-1)^k/(6k+5). - Charles R Greathouse IV, Sep 08 2011
Product_{k >= 1}(1-(6k)^(-2))^(-1). - Fred Daniel Kline, May 30 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/3 = Sum {k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k = 2F1(1/2,1/2;3/2;1/4). Similar series expansions hold for Pi^2 (A002388), Pi^3 (A091925) and Pi/(2*sqrt(2)) (A093954.)
The integer sequences A(n) := 4^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k ) both satisfy the second-order recurrence equation u(n) = (20*n^2 + 4*n + 1)*u(n-1) - 8*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/3 = 1 + 1/(24 - 8*3^3/(89 - 8*2*5^3/(193 - 8*3*7^3/(337 - ... - 8*(n - 1)*(2*n - 1)^3/((20*n^2 + 4*n + 1) - ... ))))). Cf. A002388 and A093954. (End)
Equals Sum_{k >= 1} arctan(sqrt(3)*L(2k)/L(4k)) where L=A000032. See also A005248 and A056854. - Michel Marcus, Mar 29 2016
Equals Product_{n >= 1} A016910(n) / A136017(n). - Fred Daniel Kline, Jun 09 2016
Equals Integral_{x=-oo..oo} sech(x)/3 dx. - Ilya Gutkovskiy, Jun 09 2016
From Peter Bala, Nov 16 2016: (Start)
Euler's series transformation applied to the series representation Pi/3 = Sum_{k >= 0} (-1)^k/(6*k + 1) + (-1)^k/(6*k + 5) given above by Greathouse produces the faster converging series Pi/3 = (1/2) * Sum_{n >= 0} 3^n*n!*( 1/(Product_{k = 0..n} (6*k + 1)) + 1/(Product_{k = 0..n} (6*k + 5)) ).
The series given above by Greathouse is the case n = 0 of the more general result Pi/3 = 9^n*(2*n)! * Sum_{k >= 0} (-1)^(k+n)*( 1/(Product_{j = -n..n} (6*k + 1 + 6*j)) + 1/(Product_{j = -n..n} (6*k + 5 + 6*j)) ) for n = 0,1,2,.... Cf. A003881. See the example section for notes on the case n = 1.(End)
Equals Product_{p>=5, p prime} p/sqrt(p^2-1). - Dimitris Valianatos, May 13 2017
Equals A019699/4 or A019693/2. - Omar E. Pol, Aug 17 2019
Equals Integral_{x >= 0} (sin(x)/x)^4 = 1/2 + Sum_{n >= 0} (sin(n)/n)^4, by the Abel-Plana formula. - Peter Bala, Nov 05 2019
Equals Integral_{x=0..oo} 1/(1 + x^6) dx. - Bernard Schott, Mar 12 2022
Pi/3 = -Sum_{n >= 1} i/(n*P(n, 1/sqrt(-3))*P(n-1, 1/sqrt(-3))), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The first twenty terms of the series gives the approximation Pi/3 = 1.04719755(06...) correct to 8 decimal places. - Peter Bala, Mar 16 2024
Equals Integral_{x >= 0} (2*x^2 + 1)/((x^2 + 1)*(4*x^2 + 1)) dx. - Peter Bala, Feb 12 2025

A002544 a(n) = binomial(2*n+1,n)*(n+1)^2.

Original entry on oeis.org

1, 12, 90, 560, 3150, 16632, 84084, 411840, 1969110, 9237800, 42678636, 194699232, 878850700, 3931426800, 17450721000, 76938289920, 337206098790, 1470171918600, 6379820115900, 27569305764000, 118685861314020, 509191949220240, 2177742427450200, 9287309860732800
Offset: 0

Views

Author

Keywords

Comments

Coefficients for numerical differentiation.
Take the first n integers 1,2,3..n and find all combinations with repetitions allowed for the first n of them. Find the sum of each of these combinations to get this sequence. Example for 1 and 2: 1,2,1+1,1+2,2+2 gives sum of 12=a(2). - J. M. Bergot, Mar 08 2016
Let cos(x) = 1 -x^2/2 +x^4/4!-x^6/6!.. = Sum_i (-1)^i x^(2i)/(2i)! be the standard power series of the cosine, and y = 2*(1-cos(x)) = 4*sin^2(x/2) = x^2 -x^4/12 +x^6/360 ...= Sum_i 2*(-1)^(i+1) x^(2i)/(2i)! be a closely related series. Then this sequence represents the reversion x^2 = Sum_i 1/a(i) *y^(i+1). - R. J. Mathar, May 03 2022

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 514.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A002736/2.
A diagonal of A331430.

Programs

  • Maple
    seq((n+1)^2*(binomial(2*n+2, n+1))/2, n=0..29); # Zerinvary Lajos, May 31 2006
  • Mathematica
    Table[Binomial[2n+1,n](n+1)^2,{n,0,20}] (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    a(n)=binomial(2*n+1,n)*(n+1)^2
    
  • PARI
    x='x+O('x^99); Vec((1+2*x)/(1-4*x)^(5/2)) \\ Altug Alkan, Jul 09 2016
    
  • Python
    from sympy import binomial
    def a(n): return binomial(2*n + 1, n)*(n + 1)**2 # Indranil Ghosh, Apr 18 2017

Formula

G.f.: (1 + 2x)/(1 - 4x)^(5/2).
a(n-1) = sum(i_1 + i_2 + ... + i_n) where the sum is over 0 <= i_1 <= i_2 <= ... <= i_n <= n; a(n) = (n+1)^2 C(2n+1, n). - David Callan, Nov 20 2003
a(n) = (n+1)^2 * binomial(2*n+2,n+1)/2. - Zerinvary Lajos, May 31 2006
Asymptotics: a(n)-> (1/64) * (128*n^2+176*n+41) * 4^n * n^(-1/2)/(sqrt(Pi)), for n->infinity. - Karol A. Penson, Aug 05 2013
G.f.: 2F1(3/2,2;1;4x). - R. J. Mathar, Aug 09 2015
a(n) = A002457(n)*(n+1). - R. J. Mathar, Aug 09 2015
a(n) = A000217(n)*A000984(n). - J. M. Bergot, Mar 10 2016
a(n-1) = A001791(n)*n*(n+1)/2. - Anton Zakharov, Jul 04 2016
From Ilya Gutkovskiy, Jul 04 2016: (Start)
E.g.f.: ((1 + 2*x)*(1 + 8*x)*BesselI(0,2*x) + 2*x*(3 + 8*x)*BesselI(1,2*x))*exp(2*x).
Sum_{n>=0} 1/a(n) = Pi^2/9 = A100044. (End)
From Peter Bala, Apr 18 2017: (Start)
With x = y^2/(1 + y) we have log^2(1 + y) = Sum_{n >= 0} (-1)^n*x^(n+1)/a(n). See Shenton and Kemp.
Series reversion ( Sum_{n >= 0} (-1)^n*x^(n+1)/a(n) ) = Sum_{n >= 1} 2*x^n/(2*n)! = Sum_{n >= 1} x^n/A002674(n). (End)
D-finite with recurrence n^2*a(n) -2*(n+1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 08 2021
Sum_{n>=0} (-1)^n/a(n) = 4*arcsinh(1/2)^2 = A202543^2. - Amiram Eldar, May 14 2022

A214549 Decimal expansion of 4*Pi^2/27.

Original entry on oeis.org

1, 4, 6, 2, 1, 6, 3, 6, 1, 4, 9, 7, 6, 2, 0, 1, 2, 7, 6, 8, 6, 4, 3, 6, 9, 0, 3, 7, 0, 1, 8, 6, 8, 9, 0, 5, 7, 0, 8, 3, 5, 1, 1, 0, 2, 3, 2, 9, 4, 9, 3, 1, 9, 4, 4, 6, 5, 3, 8, 2, 9, 5, 3, 7, 2, 1, 7, 7, 8, 4, 4, 1, 8, 1, 3, 6, 1, 7, 8, 5, 5, 4, 5, 1, 8, 7, 8, 1, 2, 4, 4, 9, 9
Offset: 1

Views

Author

R. J. Mathar, Jul 20 2012

Keywords

Comments

Represents the value of the Dirichlet series for A011655 (principal Dirichlet character mod 3) at s=2.
Equals the asymptotic mean of the abundancy index of the numbers that are not divisible by 3 (A001651). - Amiram Eldar, May 12 2023

Examples

			1.4621636149762012768643690370186...
		

Crossrefs

Programs

  • Julia
    using Nemo
    R = RealField(310)
    t = const_pi(RR) + const_pi(RR); s = t * t
    s / RR(27) |> println # Peter Luschny, Mar 13 2018
  • Magma
    R:= RealField(); 4*Pi(R)^2/27; // G. C. Greubel, Mar 08 2018
    
  • Magma
    R:=RealField(106); SetDefaultRealField(R); n:=4*Pi(R)^2/27; Reverse(Intseq(Floor(10^105*n))); // Bruno Berselli, Mar 13 2018
    
  • Maple
    evalf(4*Pi^2/27) ;
  • Mathematica
    RealDigits[(4Pi^2)/27,10,120][[1]] (* Harvey P. Dale, Dec 20 2012 *)
  • PARI
    4*Pi^2/27 \\ G. C. Greubel, Mar 08 2018
    

Formula

Equals (4/3)*A100044.
Equals Sum_{n>=0} (1/(3*n+1)^2 + 1/(3*n+2)^2).
From Peter Luschny, May 13 2020: (Start)
Equals (8/9) * Sum_(k>=1) 1/k^2 =8/9 *A013661.
Equals -(16/9) * Sum_(k>=1) (-1)^k/k^2 = -16/9 * A072691.
Equals (64/27) * ( Integral_{x=0..1} sqrt(1 - x^2) )^2 = 64/27 * A091476. (End)
Equals Integral_{x=0..oo} log(x)/(x^3 - 1) dx. - Amiram Eldar, Aug 12 2020

A120325 Period 6: repeat [0, 0, 1, 0, 1, 0].

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Dirichlet series for the principal character mod 6: L(s,chi) = Sum_{n>=1} a(n+3)/n^s = (1 + 1/6^s - 1/2^s - 1/3^s) Riemann-zeta(s), e.g., L(2,chi) = A100044, L(4,chi) = 5*Pi^4/486, L(6,chi) = 91*Pi^6/87480. See Jolley eq (313) and arXiv:1008.2547 L(m=6,r=1,s). - R. J. Mathar, Jul 31 2010

Examples

			a(0) = (1/3)*(sin(0) + sin(0))^2 = 0.
a(1) = (1/3)*(sin(Pi/6) + sin(7*Pi/6))^2 = (1/3)*(1/2 - 1/2)^2 = 0.
a(2) = (1/3)*(sin(Pi/3) + sin(7*Pi/3))^2 = (1/3)*((sqrt(3))/2 + (sqrt(3))/2)^2 = 1.
a(3) = (1/3)*(sin(Pi/2) + sin(7*Pi/2))^2 = (1/3)*(1 - 1)^2 = 0.
a(4) = (1/3)*(sin(2*Pi/3) + sin(14*Pi/3))^2 = (1/3)*((sqrt(3))/2 + (sqrt(3))/2)^2 = 1.
a(5) = (1/3)*(sin(5*Pi/6) + sin(35*Pi/6))^2 = (1/3)*(1/2 - 1/2)^2 = 0.
		

References

  • L. B. W. Jolley, Summation of Series, Dover (1961).

Crossrefs

Characteristic function of A047235. One's complement of A093719.

Programs

  • Magma
    [(n+3)^2 mod (2+((n+1) mod 2)) : n in [0..100]]; // Wesley Ivan Hurt, Oct 31 2014
    
  • Maple
    P:=proc(n)local i,j; for i from 0 by 1 to n do j:=1/3*(sin(i*Pi/6)+sin(7*i*Pi/6))^2; print(j); od; end: P(20);
    seq(abs(numtheory[jacobi](n,6)),n=3..150) ; # R. J. Mathar, Jul 31 2010
  • Mathematica
    Table[Mod[(n + 3)^2, (5 + (-1)^n)/2], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 31 2014 *)
    PadRight[{},120,{0,0,1,0,1,0}] (* Harvey P. Dale, Oct 05 2016 *)
  • PARI
    A120325(n) = ((n%3)&&!(n%2)); \\ Antti Karttunen, Dec 03 2022
  • Python
    def A120325(n): return int(not (n+3) % 6 & 3 ^ 1) # Chai Wah Wu, May 25 2022
    

Formula

a(n) = (1/3)*(sin(n*Pi/6) + sin(7*n*Pi/6))^2.
From R. J. Mathar, Nov 22 2008: (Start)
G.f.: x^2*(1+x^2)/((1+x)*(1-x)*(1+x+x^2)*(1-x+x^2)).
a(n+6) = a(n). (End)
a(n) = ((n+3)*Fibonacci(n+3)) mod 2. - Gary Detlefs, Dec 13 2010
a(n) = 0 if n mod 6 = 0, otherwise a(n) = n mod 2 + (-1)^n. - Gary Detlefs, Dec 13 2010
a(n) = (n+3)^2 mod (5+(-1)^n)/2. - Wesley Ivan Hurt, Oct 31 2014
a(n) = sin(n*Pi/3)^2*(2-4*cos(n*Pi/3))/3. - Wesley Ivan Hurt, Jun 19 2016
E.g.f.: 2*(cosh(x) - cos(sqrt(3)*x/2)*cosh(x/2))/3. - Ilya Gutkovskiy, Jun 20 2016
a(n) = sign((n-3) mod 2) * sign((n-3) mod 3). - Wesley Ivan Hurt, Feb 04 2022
From Antti Karttunen, Dec 03 2022: (Start)
a(n) = 1 - A093719(n).
a(n) = [A276086(n) == 3 (mod 6)], where [ ] is the Iverson bracket.
a(n) = A059841(n) - A358841(n) - A358842(n).
For n >= 1, a(n) = A059841(n) - A358754(n) - A358755(n).
(End)

Extensions

Data section extended up to a(120) by Antti Karttunen, Dec 03 2022

A353908 Decimal expansion of Pi^2/36.

Original entry on oeis.org

2, 7, 4, 1, 5, 5, 6, 7, 7, 8, 0, 8, 0, 3, 7, 7, 3, 9, 4, 1, 2, 0, 6, 9, 1, 9, 4, 4, 4, 1, 0, 0, 4, 1, 9, 8, 2, 0, 3, 1, 5, 8, 3, 1, 6, 8, 6, 7, 7, 9, 9, 7, 3, 9, 6, 2, 2, 5, 9, 3, 0, 3, 8, 2, 2, 8, 3, 3, 4, 5, 7, 8, 4, 0, 0, 5, 3, 3, 4, 7, 8, 9, 7, 2, 2, 7, 1, 4, 8, 3, 4, 3, 6, 6, 2, 6, 4, 5, 0, 8, 8, 4, 0, 0, 0, 7
Offset: 0

Views

Author

Omar E. Pol, May 10 2022

Keywords

Comments

Ratio between the volume of the stepped pyramid with an infinite number of levels described in A245092 and that of the circumscribed cube (see the first formula).
See also Vaclav Kotesovec's formula (2016) in A175254.
Volume shared by a sphere inscribed in a cube of volume Pi and one of the six pyramids inscribed in the cube. - Omar E. Pol, Sep 01 2024

Examples

			0.2741556778080377394120691944410041982031583168677997396225930382283345784...
		

Crossrefs

Programs

  • Maple
    evalf(Pi^2/36, 121);  # Alois P. Heinz, May 11 2022
  • Mathematica
    RealDigits[Pi^2/36, 10, 100][[1]] (* Amiram Eldar, May 11 2022 *)
  • PARI
    Pi^2/36
    
  • PARI
    zeta(2)/6

Formula

Equals lim_{n->oo} A175254(n)/n^3.
Equals A002388/36.
Equals A102753/18.
Equals A195055/12.
Equals A091476/9.
Equals A013661/6.
Equals A100044/4.
Equals A072691/3.
Equals A086463/2.
Equals A086729*2.
Equals A019673^2.
Equals Re(dilog((1+sqrt(3)*i)/2)). - Mohammed Yaseen, Jul 03 2024

A104777 Integer squares congruent to 1 mod 6.

Original entry on oeis.org

1, 25, 49, 121, 169, 289, 361, 529, 625, 841, 961, 1225, 1369, 1681, 1849, 2209, 2401, 2809, 3025, 3481, 3721, 4225, 4489, 5041, 5329, 5929, 6241, 6889, 7225, 7921, 8281, 9025, 9409, 10201, 10609, 11449, 11881, 12769, 13225, 14161, 14641, 15625, 16129
Offset: 1

Views

Author

Michael Somos, Mar 24 2005

Keywords

Comments

Exponents of powers of q in expansion of eta(q^24).
Odd squares not divisible by 3. - Reinhard Zumkeller, Nov 14 2015
From Peter Bala, Jan 03 2025: (Start)
Exponents of q in the expansion of q*Product_{n >= 1} (1 - q^(24*n))^5/(1 - q^(48*n))^2 = q - 5*q^(5^2) + 7*q^(7^2) - 11*q^(11^2) + 13*q^(13^2) - 17*q^(17^2) + 19*q^(19)^2 - + ... (a consequence of the quintuple product identity).
Also, exponents in the expansion of q*Product_{n >= 1} (1 - q^(48*n))^13 / ( (1 - q^(24*n))*(1 - q^(96*n)) )^5 = q + 5*q^(5^2) + 7*q^(7^2) + 11*q^(11^2) - 13*q^(13^2) - 17*q^(17^2) - 19*q^(19^2) - 23*q^(23^2) + + + + - - - - ... (see Oliver, Theorem 1.1). (End)

Examples

			eta(q^24) = q - q^25 - q^49 + q^121 + q^169 - q^289 - q^361 + ...
		

Crossrefs

Disjoint union of A016922 and A016970.

Programs

  • Haskell
    a104777 = (^ 2) . a007310  -- Reinhard Zumkeller, Nov 14 2015
  • Maple
    seq(9*(n-1/2)^2 + 1/4 + (-1)^n * (3*n - 3/2), n = 1 .. 100); # Robert Israel, Dec 12 2014
  • Mathematica
    Select[Range[130]^2,Mod[#,6]==1&] (* or *) LinearRecurrence[{1,2,-2,-1,1},{1,25,49,121,169},50] (* Harvey P. Dale, Mar 09 2017 *)
  • PARI
    {a(n) = (3*n - 1 - n%2)^2};
    

Formula

A033683(a(n)) = 1.
G.f.: ( -1-24*x-22*x^2-24*x^3-x^4 ) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Feb 20 2011
a(n) = A007310(n)^2 = 1 + 24*A001318(n-1).
a(n) = 9*n^2 - 9*n + 5/2 + (-1)^n * (3*n - 3/2). a(n+4) = 2*a(n+2) - a(n) + 72. - Robert Israel, Dec 12 2014
a(n) == 1 (mod 24). - Joerg Arndt, Jan 03 2017
Sum_{n>=1} 1/a(n) = Pi^2/9 (A100044). - Amiram Eldar, Dec 19 2020

A352475 Numbers m such that gcd(d(m),6) = 1.

Original entry on oeis.org

1, 16, 64, 81, 625, 729, 1024, 1296, 2401, 4096, 5184, 10000, 11664, 14641, 15625, 28561, 38416, 40000, 46656, 50625, 59049, 65536, 82944, 83521, 117649, 130321, 153664, 194481, 234256, 250000, 262144, 279841, 331776, 455625, 456976, 531441, 640000, 707281, 746496
Offset: 1

Views

Author

Michael De Vlieger, Mar 26 2022

Keywords

Comments

All terms are square since numbers coprime to 6 are odd.
The square roots of terms are in A001694.
Intersection of A000290 and A336590, i.e., numbers whose prime factorization has only exponents that are congruent to {0, 4} mod 6 (A047233). - Amiram Eldar, Mar 31 2022

Crossrefs

Programs

  • Mathematica
    Select[Range[864]^2, GCD[DivisorSigma[0, #], 6] == 1 &] (* or, more efficiently, *)
    With[{nn = 864}, Select[Union[Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}]]^2, Mod[DivisorSigma[0, #], 3] > 0 &]]
  • PARI
    isok(m) = gcd(numdiv(m), 6) == 1; \\ Michel Marcus, Mar 29 2022
    
  • PARI
    m = 100000; seq = direuler(p=2, m, (1 - X^8)/(1 - X^4)/(1 - X^6)); for(n=1, m, if(seq[n] != 0, print1(n, ", "))) \\ Vaclav Kotesovec, May 19 2022

Formula

a(n) = A350014(n)^2.
Sum_{n>=1} 1/a(n) = Pi^2/9 (A100044). - Amiram Eldar, Mar 31 2022
The number of terms <= x is (zeta(3/2)/zeta(2))*x^(1/4) + (zeta(2/3)/zeta(4/3))*x^(1/6) + O(x^(1/8 + eps)), for all eps > 0 (Hilberdink, 2022). - Amiram Eldar, May 18 2022

A185717 Expansion of q^(-1) * c(q^2) * (c(q) - c(q^4)) / 9 in powers of q^2 where c() is a cubic AGM theta function.

Original entry on oeis.org

1, 3, 6, 8, 9, 12, 14, 18, 18, 20, 24, 24, 31, 27, 30, 32, 36, 48, 38, 42, 42, 44, 54, 48, 57, 54, 54, 72, 60, 60, 62, 72, 84, 68, 72, 72, 74, 93, 96, 80, 81, 84, 108, 90, 90, 112, 96, 120, 98, 108, 102, 104, 144, 108, 110, 114, 114, 144, 126, 144, 133, 126, 156, 128
Offset: 0

Views

Author

Michael Somos, Feb 10 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 3*x + 6*x^2 + 8*x^3 + 9*x^4 + 12*x^5 + 14*x^6 + 18*x^7 + 18*x^8 + ...
q + 3*q^3 + 6*q^5 + 8*q^7 + 9*q^9 + 12*q^11 + 14*q^13 + 18*q^15 + ...
		

Crossrefs

Programs

  • Mathematica
    A185717[n_] := SeriesCoefficient[(QPochhammer[q^3, q^3]/QPochhammer[-q^3, q^3])^4*(1/(QPochhammer[q, q^2]*QPochhammer[q^3, q^6])^3), {q, 0, n}];
    Table[A185717[n], {n, 0, 50}] (* G. C. Greubel, Jul 10 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, if( (n/d) % 3, 1, 0) * d))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A)^5 / (eta(x + A)^3 * eta(x^6 + A)), n))}

Formula

Expansion of phi(-x^3)^4 / (chi(-x) * chi(-x^3))^3 in powers of x where phi(), chi() are Ramanujan theta functions.
Euler transform of period 6 sequence [ 3, 0, -2, 0, 3, -4, ...].
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(3^e) = 3^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 2 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A118271.
a(3*n + 1) = 3 * a(n). A078708(2*n + 1) = A121443(2*n + 1) = A124449(2*n + 1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/9 = 1.0966227... (A100044). - Amiram Eldar, Dec 28 2023

A195059 Decimal expansion of Pi^2/13.

Original entry on oeis.org

7, 5, 9, 2, 0, 0, 3, 3, 8, 5, 4, 5, 3, 3, 5, 2, 7, 8, 3, 7, 1, 8, 8, 3, 9, 2, 3, 0, 6, 7, 3, 9, 6, 2, 4, 1, 1, 7, 7, 9, 7, 6, 8, 7, 7, 4, 8, 0, 0, 6, 0, 8, 1, 7, 4, 1, 6, 4, 1, 1, 4, 9, 0, 4, 7, 8, 4, 6, 4, 9, 8, 6, 3, 3, 9, 9, 3, 8, 8, 6, 4, 8, 4, 6, 2, 9, 0, 2, 6, 1, 8, 2, 4, 5, 0, 4, 0, 1, 7, 8, 3, 2, 6, 1, 7
Offset: 0

Views

Author

Omar E. Pol, Oct 04 2011

Keywords

Examples

			0.7592003385453352783718839230673962411780...
		

Crossrefs

Programs

Extensions

Extended by T. D. Noe, Oct 05 2011

A214552 Decimal expansion of the Dirichlet L-series of the non-principal character mod 6 evaluated at s=2.

Original entry on oeis.org

9, 7, 6, 6, 2, 8, 0, 1, 6, 1, 2, 0, 6, 0, 7, 8, 7, 1, 0, 8, 3, 9, 8, 4, 2, 8, 7, 0, 3, 0, 1, 1, 5, 4, 4, 5, 4, 5, 6, 4, 1, 7, 9, 2, 0, 6, 8, 1, 6, 0, 6, 7, 7, 5, 2, 7, 7, 6, 2, 5, 0, 7, 8, 7, 0, 8, 6, 0, 8, 7, 3, 0, 8, 1, 4, 5, 2, 2, 7, 7, 2, 6, 1, 6, 0, 8, 6, 9, 6, 3, 5, 4, 0, 2, 6, 2, 3, 2, 6, 2, 7, 6, 3, 0, 2
Offset: 0

Views

Author

R. J. Mathar, Jul 20 2012

Keywords

Comments

The non-principal character is A134667. The constant is sum_{n>=1} A134667(n)/n^s with s=2.

Examples

			0.97662801612060787108398...= 1/1^2 -1/5^2 +1/7^2 -1/11^2 + 1/13^2 -1/17^2 +-...
		

Crossrefs

Programs

  • Maple
    evalf( (Psi(1,1/6)-Psi(1,5/6))/36) ;
  • Mathematica
    RealDigits[ (PolyGamma[1, 1/6] - PolyGamma[1, 5/6])/36, 10, 105] // First  (* Jean-François Alcover, Feb 11 2013, after R. J. Mathar *)

Formula

Equals 2/3*4F3(1/2,1,1,2; 5/4,3/2,7/4; 3/4), where 4F3 is the generalized hypergeometric function. - Jean-François Alcover, Dec 16 2014, after R. J. Mathar.
Equals A173973 / 3.6 . - R. J. Mathar, Jun 02 2016

Extensions

More terms from Jean-François Alcover, Feb 11 2013
Showing 1-10 of 16 results. Next