cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A100044 Decimal expansion of Pi^2/9.

Original entry on oeis.org

1, 0, 9, 6, 6, 2, 2, 7, 1, 1, 2, 3, 2, 1, 5, 0, 9, 5, 7, 6, 4, 8, 2, 7, 6, 7, 7, 7, 7, 6, 4, 0, 1, 6, 7, 9, 2, 8, 1, 2, 6, 3, 3, 2, 6, 7, 4, 7, 1, 1, 9, 8, 9, 5, 8, 4, 9, 0, 3, 7, 2, 1, 5, 2, 9, 1, 3, 3, 3, 8, 3, 1, 3, 6, 0, 2, 1, 3, 3, 9, 1, 5, 8, 8, 9, 0, 8, 5, 9, 3, 3, 7, 4, 6, 5, 0, 5, 8, 0, 3, 5, 3
Offset: 1

Views

Author

Eric W. Weisstein, Oct 31 2004

Keywords

Comments

The Dirichlet L-series for the principal character mod 6 (which is A120325 shifted left) evaluated at 2. - R. J. Mathar, Jul 20 2012
Equals the asymptotic mean of the abundancy index of the numbers coprime to 6 (A007310). - Amiram Eldar, May 12 2023

Examples

			1.096622711232150957648276777764...
		

References

  • F. Aubonnet, D. Guinin, and B.Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.
  • L. B. W. Jolley, Summation of Series, Dover, 1961.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/9, 10, 110][[1]] (* G. C. Greubel, Feb 17 2017 *)
  • PARI
    default(realprecision, 110); Pi^2/9 \\ G. C. Greubel, Feb 17 2017
    
  • Sage
    numerical_approx(pi^2/9, digits=120) # G. C. Greubel, Jun 02 2021

Formula

Equals 1 + (1/2)*(1/3)*(1/2) + (1/3)*(1*2)/(3*5)*(1/2)^2 + (1/4) *(1*2*3)/(3*5*7)*(1/2)^3 + .... [Jolley eq 277]
Equals 1/1^2 + 1/5^2 + 1/7^2 + 1/11^2 + 1/13^2 + 1/17^2 + .... - R. J. Mathar, Jul 20 2012
Equals 2*Sum_{n>=1} 1/(6*n*(3*n + (-1)^n - 3) - 3*(-1)^n + 5) = 2*Sum_{n>=1} 1/(2*A104777(n)). - Alexander R. Povolotsky, May 18 2014
Equals A019670^2. - Michel Marcus, May 19 2014
Equals 2*A086463 = 2*Sum_{n>=1} 1/A091999(n)^2, equivalent to the formula of 2012 above. - Alexander R. Povolotsky, May 20 2014
Equals 3F2(1,1,1; 3/2,2 ; 1/4), following from Clausen's formula of J. Reine Angew. Math 3 (1828) for squares of 2F1() as noted in A019670. - R. J. Mathar, Oct 16 2015
Equals Product_{n >= 3} prime(n)^2 / (prime(n)^2 - 1), Euler's prime product, excluding first two primes. - Fred Daniel Kline, Jun 09 2016
Equals Integral_{x=0..oo} log(x)/(x^6 - 1) dx. - Amiram Eldar, Aug 12 2020
Equals Sum_{k>=1} A000120(k) * (2*k+1)/(k^2*(k+1)^2) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021
Equals Integral_{x=0..1} log(1+x+x^2)/x dx (Aubonnet). - Bernard Schott, Feb 04 2022
Equals Sum_{k>=1} A008833(k)/k^4. - Amiram Eldar, Jan 25 2024
Continued fraction expansion: 1/(1 - 1/(13 - 48/(34 - 270/(65 - ... - 2*(2*n-1)*n^3/((5*n^2+6*n+2) - ... ))))). See A130549. - Peter Bala, Feb 16 2024
Equals Sum_{k >= 0} 1/((k + 1)*(2*k + 1)*binomial(2*k, k)). See Catalan, Section 21, equation 30. - Peter Bala, Aug 14 2024

A033683 a(n) = 1 if n is an odd square not divisible by 3, otherwise 0.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Examples

			G.f. = x + x^25 + x^49 + x^121 + x^169 + x^289 + x^361 + x^529 + x^625 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 105, Eq. (41).

Crossrefs

Programs

  • Haskell
    a033683 n = fromEnum $ odd n && mod n 3 > 0 && a010052 n == 1
    -- Reinhard Zumkeller, Nov 14 2015
    
  • Magma
    Basis( ModularForms( Gamma0(144), 1/2), 106)[2]; /* Michael Somos, Dec 07 2019 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x^4] - EllipticTheta[ 2, 0, x^36])/2, {x, 0, n}] // PowerExpand; (* Michael Somos, Dec 07 2019 *)
    Table[If[OddQ[n]&&IntegerQ[Sqrt[n]]&&Mod[n,3]!=0,1,0],{n,0,120}] (* Harvey P. Dale, Sep 06 2020 *)
  • PARI
    {a(n) = if( n%24 == 1, issquare(n), 0)}; /* Michael Somos, Jan 26 2008 */
    

Formula

Essentially the series psi_6(z)=(1/2)(theta_2(z/9)-theta_2(z)).
a(A104777(n)) = 1.
A080995(n) = a(24n+1).
Multiplicative with a(p^e) = 1 if 2 divides e and p > 3, 0 otherwise. - Mitch Harris, Jun 09 2005
Euler transform of a period 144 sequence. - Michael Somos, Jan 26 2008
a(n) = A033684(n) * A000035(n).
Dirichlet g.f.: zeta(2*s) *(1-2^(-2s)) *(1-3^(-2s)). - R. J. Mathar, Mar 10 2011
G.f.: Sum_{k in Z} x^(6*k+1)^2. - Michael Somos, Dec 07 2019
Sum_{k=1..n} a(k) ~ sqrt(n)/3. - Amiram Eldar, Jan 14 2024

A204999 a(n) = (1/n)*A204998(n).

Original entry on oeis.org

3, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.
Positions of 3's seem to be given by a subsequence of A104777. - Antti Karttunen, Sep 29 2018

Crossrefs

Programs

  • Mathematica
    (See the program at A204994.)
  • PARI
    A204999(n) = { my(d); for(k=sqrtint(1+n), oo, for(j=1,k-1,if(!((d=(k^2)-(j^2))%n),return(d/n),if(dAntti Karttunen, Sep 28 2018

Formula

a(n) = (A204996(n)-A204997(n))/n.

Extensions

More terms from Antti Karttunen, Sep 28 2018

A164097 Numbers k such that 6*k + 7 is a perfect square.

Original entry on oeis.org

3, 7, 19, 27, 47, 59, 87, 103, 139, 159, 203, 227, 279, 307, 367, 399, 467, 503, 579, 619, 703, 747, 839, 887, 987, 1039, 1147, 1203, 1319, 1379, 1503, 1567, 1699, 1767, 1907, 1979, 2127, 2203, 2359, 2439, 2603, 2687, 2859, 2947, 3127, 3219, 3407, 3503, 3699
Offset: 1

Views

Author

Vincenzo Librandi, Aug 10 2009

Keywords

Comments

The entries are prime, or divisible by 3, or divisible by prime of the form 3*m+1.

Crossrefs

Cf. A062717, A104777 (the squares 6*k+7).

Programs

  • Magma
    [n: n in [1..4000] | IsSquare(6*n+7)]; // Vincenzo Librandi, Oct 12 2012
  • Mathematica
    Select[Range[4000], IntegerQ[Sqrt[6 # + 7 ]] &] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {3, 7, 19, 27, 47}, 50] (* Harvey P. Dale, Apr 29 2011 *)

Formula

From R. J. Mathar, Aug 26 2009: (Start)
a(n) = a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-3-4*x-6*x^2+x^4)/((1+x)^2*(x-1)^3).
a(n) = 3*(2*n-1+2*n^2)/4 -(-1)^n*(1+2*n)/4 = A062717(n+1)-1. (End)
Sum_{n>=1} 1/a(n) = 1 + (tan((2+sqrt(7))*Pi/6) - cot((1+sqrt(7))*Pi/6))*Pi/(2*sqrt(7)). - Amiram Eldar, Feb 24 2023

Extensions

Edited by R. J. Mathar, Aug 26 2009

A229852 3*h^2, where h is an odd integer not divisible by 3.

Original entry on oeis.org

3, 75, 147, 363, 507, 867, 1083, 1587, 1875, 2523, 2883, 3675, 4107, 5043, 5547, 6627, 7203, 8427, 9075, 10443, 11163, 12675, 13467, 15123, 15987, 17787, 18723, 20667, 21675, 23763, 24843, 27075, 28227, 30603, 31827, 34347, 35643, 38307, 39675, 42483, 43923
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 01 2013

Keywords

Comments

If p = a(n)*2^k + 1 divides a composite Fermat number 2^(2^m) + 1 and p is a prime, then k is odd.
More precisely, k == 1 (mod 4) if h == +/- 1 (mod 5) and k == 3 (mod 4) if h == +/- 2 (mod 5) (Krizek, Luca and Somer).

References

  • M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, pp. 63-65.

Crossrefs

Programs

  • Magma
    [3*h^2 : h in [1..121 by 2] | not IsZero(h mod 3)];
    
  • Mathematica
    3*Select[Range[1, 121, 2], Mod[#, 3] > 0 &]^2 (* Amiram Eldar, Jan 02 2021 *)
  • PARI
    forstep(h=1, 121, 2, if(!(h%3==0), print1(3*h^2, ", ")));
    
  • PARI
    Vec(3*x*(1+24*x+22*x^2+24*x^3+x^4) / ((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 26 2016

Formula

G.f.: 3*x*(1+24*x+22*x^2+24*x^3+x^4) / ((1-x)^3*(1+x)^2).
a(n) = 3*A104777(n).
From Colin Barker, Jan 26 2016: (Start)
a(n) = 3*(18*n^2+6*(-1)^n*n-18*n-3*(-1)^n+5)/2.
a(n) = 27*n^2-18*n+3 for n even.
a(n) = 27*n^2-36*n+12 for n odd.
(End)
Sum_{n>=1} 1/a(n) = Pi^2/27 (A291050). - Amiram Eldar, Jan 02 2021
Showing 1-5 of 5 results.