cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A112260 Expansion of -x*(8*x^2-4*x+1) / ((2*x-1)*(4*x^2-x+1)).

Original entry on oeis.org

1, -1, -1, 11, 31, 19, -41, 11, 431, 899, 199, -1349, 1951, 15539, 24119, -5269, -36209, 115939, 522919, 583451, -459649, -696301, 5336599, 16510411, 11941231, -20545981, -1202041, 215199611, 488443231, 164515699, -715515401, 773905451, 7930934351
Offset: 1

Views

Author

Russell Walsmith, Aug 30 2005

Keywords

Comments

Previous name was: Let p = the golden mean = (1+sqrt(5))/2, t = the ordered triple (-1/p,1,p). Using the rules of 'triternion' multiplication, e.g., (1,2,3)*(1,2,3) = 1,2,3 + 6,2,4 + 6,9,3 = (13,13,10), t^n gives a sequence of ordered triples, one of which is an integer = the n-th term of the sequence.
The signs in the pattern seems to cycle through period 12. The n-th term of this sequence is a factor of the n-th term of A112259.
Let M = [1, 1-p, p; p, 1, 1-p; 1-p, p, 1] a 3 X 3 matrix where p = (1 + sqrt(5))/2. All the numbers on the main diagonal of M^n are equal to a(n). - Philippe Deléham, Sep 19 2020

Examples

			t = (-0.618...,1,1.618...); t^2 = (3.618...,1.381...,-1). Hence a(2) = -1.
		

Crossrefs

Cf. A112259, A112261 (first differences).

Programs

  • Magma
    I:=[1,-1,-1]; [n le 3 select I[n] else 3*Self(n-1)-6*Self(n-2)+8*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Nov 02 2014
  • Mathematica
    s = {-1/GoldenRatio, 1, GoldenRatio}; trit[lst_] := Block[{a, b, c, d, e, f}, {a, b, c} = lst[[1]]; {d, e, f} = lst[[2]]; {{a, b, c}, FullSimplify[{a*d + b*f + c*e, a*e + b*d + c*f, a*f + b*e + c*d}]}]; f[n_] := Select[ Nest[trit, {s, s}, n][[2]], IntegerQ@# &][[1]]; Table[ f[n], {n, 0, 26}]
    CoefficientList[Series[(8 x^2 - 4 x + 1)/((1 - 2 x) (4 x^2 - x + 1)), {x, 0, 70}], x] (* Vincenzo Librandi, Nov 02 2014 *)
  • PARI
    Vec(-x*(8*x^2-4*x+1)/((2*x-1)*(4*x^2-x+1)) + O(x^100)) \\ Colin Barker, Nov 02 2014
    

Formula

t = (-1/p, 1, p). (a, b, c)^2 = a(a, b, c) + b(c, a, b) + c(b, c, a) = (a^2+2bc, c^2+2ab, b^2+2ac). The integer term in t^n is the n-th term.
From Colin Barker, Nov 02 2014: (Start)
G.f.: -x*(8*x^2-4*x+1) / ((2*x-1)*(4*x^2-x+1)).
a(n) = 3*a(n-1)-6*a(n-2)+8*a(n-3). (End)

Extensions

More terms from Robert G. Wilson v, May 16 2006
New name (using g.f. by Colin Barker) from Joerg Arndt, Nov 04 2014

A112261 a(n) = A112260(n+1) - A112260(n).

Original entry on oeis.org

-2, 0, 12, 20, -12, -60, 52, 420, 468, -700, -1548, 3300, 13588, 8580, -29388, -30940, 152148, 406980, 60532, -1043100, -236652, 6032900, 11173812, -4569180, -32487212, 19343940, 216401652, 273243620, -323927532, -880031100, 1489420852, 7157028900
Offset: 1

Views

Author

Russell Walsmith, Aug 30 2005

Keywords

Examples

			a(4) = A112260(5) - A112260(4) = 31-11 = 20.
		

Crossrefs

Formula

a(n) = 3*a(n-1)-6*a(n-2)+8*a(n-3); G.f.: -2*(3*x-1) / ((2*x-1)*(4*x^2-x+1)). - Colin Barker, Nov 02 2014

Extensions

Name corrected and more terms from Colin Barker, Nov 02 2014

A335840 Expansion of x*(1+2*x)/((1-2*x)*(1-x+4*x^2)).

Original entry on oeis.org

1, 5, 9, 5, 1, 45, 169, 245, 81, 125, 1849, 5445, 6241, 845, 8649, 70805, 167281, 146205, 1369, 465125, 2556801, 4890605, 3052009, 266805, 21613201, 87654845, 135419769, 53235845, 48427681, 909226125, 2862999049, 3521061845, 659000241, 3754622045
Offset: 1

Views

Author

Philippe Deléham, Sep 18 2020

Keywords

Comments

Numbers in the sequence are alternatively products of squares or five times a product of squares.

Examples

			a(11) = 43^2, a(12) = 5*3^2*11^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-6,8},{1,5,9},34] (* Stefano Spezia, Sep 19 2020 *)

Formula

G.f.: x*(1+2*x)/((1-2*x)*(1-x+4*x^2)).
a(n) = 3*a(n-1) - 6*a(n-2) + 8*a(n-3) for n > 3.
a(n) = A112259(n)/(A112260(n))^2.
3*a(n) = 2^(n+1) - A272931(n). - R. J. Mathar, Aug 19 2022
Showing 1-3 of 3 results.