cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A112261 a(n) = A112260(n+1) - A112260(n).

Original entry on oeis.org

-2, 0, 12, 20, -12, -60, 52, 420, 468, -700, -1548, 3300, 13588, 8580, -29388, -30940, 152148, 406980, 60532, -1043100, -236652, 6032900, 11173812, -4569180, -32487212, 19343940, 216401652, 273243620, -323927532, -880031100, 1489420852, 7157028900
Offset: 1

Views

Author

Russell Walsmith, Aug 30 2005

Keywords

Examples

			a(4) = A112260(5) - A112260(4) = 31-11 = 20.
		

Crossrefs

Formula

a(n) = 3*a(n-1)-6*a(n-2)+8*a(n-3); G.f.: -2*(3*x-1) / ((2*x-1)*(4*x^2-x+1)). - Colin Barker, Nov 02 2014

Extensions

Name corrected and more terms from Colin Barker, Nov 02 2014

A112259 Expansion of x*(1+8*x)/((1-8*x)*(1+11*x+64*x^2)).

Original entry on oeis.org

1, 5, 9, 605, 961, 16245, 284089, 29645, 15046641, 101025125, 73222249, 9908816445, 23755748641, 204034140245, 5031349566489, 1965713970605, 219320727489361, 1965265930868805, 374345220088009, 158335559155140125
Offset: 1

Views

Author

Russell Walsmith, Aug 30 2005

Keywords

Comments

Previous name was: Let p = the golden mean = (1+sqrt(5))/2. A point in 3-space is identified by three numbers t = (a,b,c). f(t) is the product a*b*c. Let t = (-1/p,1,p): using the rules of 'triternion' multiplication, e.g., (1,2,3)*(1,2,3)= 1,2,3 + 6,2,4 + 6,9,3 = (13,13,10), then -f(t^n) gives the sequence.
Numbers in the sequence are alternatively products of squares or five times a product of squares.
If f(t) is the sum of a+b+c then a(n)=2^(n+1). - Robert G. Wilson v, May 16 2006

Examples

			t = (-0.618...,1,1.618...); t^2 = (3.618...,1.381...,-1). Hence -f(t^2) = 5
		

Crossrefs

Programs

  • Mathematica
    s = {-1/GoldenRatio, 1, GoldenRatio}; trit[lst_] := Block[{a, b, c, d, e, f}, {a, b, c} = lst[[1]]; {d, e, f} = lst[[2]]; {{a, b, c}, FullSimplify[{a*d + b*f + c*e, a*e + b*d + c*f, a*f + b*e + c*d}]}]; f[n_] := FullSimplify[ -Times @@ Nest[trit, {s, s}, n][[2]]]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, May 16 2006 *)
    CoefficientList[Series[(1 + 8 x) / ((1 - 8 x) (1 + 11 x + 64 x^2)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 04 2013 *)
    LinearRecurrence[{-3,24,512},{1,5,9},20] (* Harvey P. Dale, Feb 28 2024 *)

Formula

t = (-1/p, 1, p). f(t) is the product 1/p*1*p. For t1 = (a, b, c) and t2 = (x, y, z), t1 - t2 = a(x, y, z) + b(z, x, y) + c(y, z, x) = (ax+bz+cy, ay+bx+cz, az+by+cx). -f(t^n) = the sequence.
G.f.: x*(1+8*x)/((1-8*x)*(1+11*x+64*x^2)). [Joerg Arndt, Aug 03 2013]
From G. C. Greubel, Sep 21 2020: (Start)
a(n) = 2^(3*n+1) * (1 - (-1)^n * T_{n}(11/16))/27, where T_{n}(x) is the Chebyshev polynomial.
a(n) = -3*a(n-1) + 24*a(n-2) + 512*a(n-3). (End)

Extensions

More terms from Robert G. Wilson v, May 16 2006
New name using g.f. from Joerg Arndt, Sep 20 2020

A335840 Expansion of x*(1+2*x)/((1-2*x)*(1-x+4*x^2)).

Original entry on oeis.org

1, 5, 9, 5, 1, 45, 169, 245, 81, 125, 1849, 5445, 6241, 845, 8649, 70805, 167281, 146205, 1369, 465125, 2556801, 4890605, 3052009, 266805, 21613201, 87654845, 135419769, 53235845, 48427681, 909226125, 2862999049, 3521061845, 659000241, 3754622045
Offset: 1

Views

Author

Philippe Deléham, Sep 18 2020

Keywords

Comments

Numbers in the sequence are alternatively products of squares or five times a product of squares.

Examples

			a(11) = 43^2, a(12) = 5*3^2*11^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-6,8},{1,5,9},34] (* Stefano Spezia, Sep 19 2020 *)

Formula

G.f.: x*(1+2*x)/((1-2*x)*(1-x+4*x^2)).
a(n) = 3*a(n-1) - 6*a(n-2) + 8*a(n-3) for n > 3.
a(n) = A112259(n)/(A112260(n))^2.
3*a(n) = 2^(n+1) - A272931(n). - R. J. Mathar, Aug 19 2022
Showing 1-3 of 3 results.