A112458
Let b(n) = A112455(n). Then b(n)/n is an integer iff n is prime (at least for the first few values, as for the Perrin sequence). This sequence is the values of b(p)/p, where p is the n th prime.
Original entry on oeis.org
1, 1, -1, 1, 0, 1, 3, -3, 2, -16, 13, 58, 93, -48, 257, -508, -2439, 3751, 3120, 21824, -28485, -49886, -184653, -158325, -1238859, 2621639, -6281879, -10666638, 5587636, -32300736, -541428896, -309499443, -3404250996, 4487895627, 30910925690, -33820854920, -104685213761, 219810779538
Offset: 1
A218439
a(n) = A001609(n)^2, where g.f. of A001609 is x*(1+3*x^2)/(1-x-x^3).
Original entry on oeis.org
1, 1, 16, 25, 36, 100, 225, 441, 961, 2116, 4489, 9604, 20736, 44521, 95481, 205209, 440896, 946729, 2033476, 4368100, 9381969, 20151121, 43283241, 92968164, 199685161, 428904100, 921243904, 1978737289, 4250127249, 9128847025, 19607840784, 42115658841
Offset: 1
O.g.f.: A(x) = x + x^2 + 16*x^3 + 25*x^4 + 36*x^5 + 100*x^6 + 225*x^7 +...
L.g.f.: L(x) = x + x^2/2 + 16*x^3/3 + 25*x^4/4 + 36*x^5/5 + 100*x^6/6 + 225*x^7/7 +...
where exponentiation yields the g.f. of A218438:
exp(L(x)) = 1 + x + x^2 + 6*x^3 + 12*x^4 + 19*x^5 + 48*x^6 + 110*x^7 +...
-
Rest[CoefficientList[Series[x*(1 + 14*x^2 + 5*x^3 - 9*x^4 - 9*x^5)/((1 + x^2 - x^3)*(1 - x - 2*x^2 - x^3)), {x, 0, 50}], x]] (* G. C. Greubel, Apr 28 2017 *)
-
{a(n)=polcoeff(x*(1+14*x^2+5*x^3-9*x^4-9*x^5)/((1+x^2-x^3)*(1-x-2*x^2-x^3+x*O(x^n))),n)}
for(n=1,40,print1(a(n),", "))
A321196
Riordan triangle T = (1/(1 + x^2 - x^3), x/(1 + x^2 - x^3)).
Original entry on oeis.org
1, 0, 1, -1, 0, 1, 1, -2, 0, 1, 1, 2, -3, 0, 1, -2, 3, 3, -4, 0, 1, 0, -6, 6, 4, -5, 0, 1, 3, -1, -12, 10, 5, -6, 0, 1, -2, 12, -4, -20, 15, 6, -7, 0, 1, -3, -7, 30, -10, -30, 21, 7, -8, 0, 1, 5, -16, -15, 60, -20, -42, 28, 8, -9, 0, 1
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
---------------------------------------------
0: 1
1: 0 1
2: -1 0 1
3: 1 -2 0 1
4: 1 2 -3 0 1
5: -2 3 3 -4 0 1
6: 0 -6 6 4 -5 0 1
7: 3 -1 -12 10 5 -6 0 1
8: -2 12 -4 -20 15 6 -7 0 1
9: -3 -7 30 -10 -30 21 7 -8 0 1
10: 5 -16 -15 60 -20 -42 28 8 -9 0 1
...
Cayley-Hamilton formula for the matrix TS(x) =[[x,-1,1], [1,0,0], [0,1,0]] with Det(TS(x)) = +1, sigma(3, 2) = +1, and Tr(TS(x)) = x. For n = 3: TS(x)^3 = R(1, x)*TS(x)^2 + (-R(0, x) + R(-1, x))*TS(x) + R(0, x)*1_3 = x*TS(x)^2 - TS(x) + 1_3. Compare this for x = -1 with r^3 = R(3)*r^2 + (-R(2) + R(1))*r + R(2)*1 = r^2 - r + 1, where r = 1/t = A192918, with the tribonacci constant t = A058265, and R(n) = A057597(n) = R(n-2, -1).
Recurrence: T(5, 2) = T(4, 1) - T(3, 2) + T(2, 2) = 1 -(-1) + 1 = 3.
Boas-Buck type recurrence with B = {0, -2, 3, ...}:
T(5, 2) = ((2+1)/(5-2))*(3*1 + (-2)*0 + 0*(-3)) = 1*3 = 3.
Z- and A-recurrence with A(n) = {1, 0, -1, 1, -1, ...} and Z(n) = A(n+1):
T(4, 0) = 0*T(3, 0) - 1*T(3, 1) + 1*T(3, 2) - 1*T(3, 3) = 0 + 2 + 0 - 1 = 1.
T(5, 2) = 1*T(4, 1) + 0*T(4, 2) - 1*T(4, 3) + 1*T(4, 4) = 2 + 0 + 0 + 1 = 3.
-
T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] - T[n - 2, k] + T[n - 3, k]; T[0, 0] = 1; T[, ] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jul 06 2019 *)
-
# uses[riordan_array from A256893]
riordan_array(1/(1 + x^2 - x^3), x/(1 + x^2 - x^3), 11) # Peter Luschny, Nov 13 2018
A362540
Number of chordless cycles of length >= 4 in the n-flower graph.
Original entry on oeis.org
3, 23, 63, 127, 273, 583, 1287, 2975, 6993, 16535, 39525, 95071, 229029, 552199, 1332375, 3215807, 7762611, 18739607, 45240309, 109217983, 263673699, 636563527, 1536798717, 3710157407, 8957109801, 21624374039, 52205854257, 126036078751, 304278008331, 734592089095
Offset: 2
- Eric Weisstein's World of Mathematics, Chordless Cycle
- Eric Weisstein's World of Mathematics, Flower Graph
- Index entries for linear recurrences with constant coefficients, signature (4,-5,4,-2,-4,7,-8,6,4,-6,0,1).
-
LinearRecurrence[{4, -5, 4, -2, -4, 7, -8, 6, 4, -6, 0, 1}, {3, 23, 63, 127, 273, 583, 1287, 2975, 6993, 16535, 39525, 95071}, 20]
CoefficientList[Series[(-3 - 11 x + 14 x^2 + 22 x^3 + 6 x^4 + 68 x^5 - 9 x^6 - 19 x^7 + 25 x^8 - 13 x^9 - 9 x^10 + x^11)/((-1 + x)^3 (1 - x - x^2 - 3 x^3 - 5 x^4 - 3 x^5 - 4 x^6 + 3 x^8 + x^9)), {x, 0, 20}], x]
Table[(1 + (-1)^n)/2 + 2 (-I)^n ChebyshevT[n, I] + 3 (n - 2) n + RootSum[-1 + # + #^3 &, #^n &] + RootSum[1 + # + #^3 &, #^n &], {n, 2, 20}]
Showing 1-4 of 4 results.
Comments