cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112495 Third column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.

Original entry on oeis.org

3, 25, 130, 546, 2037, 7071, 23436, 75328, 237127, 735813, 2260518, 6896046, 20933673, 63325051, 191088976, 575625900, 1731858075, 5206059585, 15640198410, 46966732090, 140996664733, 423191320215, 1269993390420
Offset: 0

Views

Author

Wolfdieter Lang, Oct 14 2005

Keywords

Comments

2*a(n-4) is the number of ternary words of length n where two of the letters are used at least twice. For example, for n=5 the 50 words that use 0 and 1 at least twice are 00011 (10 of this type), 00111 (10 of this type) and 00112 (30 of this type). - Enrique Navarrete, Feb 14 2025

Crossrefs

Cf. A000295 (second column).
Column k=2 of A124324 (shifted).

Programs

  • Mathematica
    CoefficientList[Series[(3 - 5*x)/(((1 - x)^3)*((1 - 2*x)^2)*(1 - 3*x)), {x, 0, 50}], x] (* G. C. Greubel, Nov 13 2017 *)
    Table[3^(n+4)/2 - (n+6)*2^(n+3) + n^2/2 + 9*n/2 + 21/2, {n,0,25}] (* Vaclav Kotesovec, Jul 23 2021 *)
  • PARI
    x='x+O('x^50); Vec((3-5*x)/(((1-x)^3)*((1-2*x)^2)*(1-3*x))) \\ G. C. Greubel, Nov 13 2017

Formula

a(n) = 3*a(n-1)+ (n+3)*(2^(n+2)-(n+3)), n>=1, a(0)=3.
G.f.: (3-5*x)/(((1-x)^3)*((1-2*x)^2)*(1-3*x)).
a(n) = 3^(n+4)/2 - (n+6)*2^(n+3) + n^2/2 + 9*n/2 + 21/2. - Vaclav Kotesovec, Jul 23 2021
E.g.f.: (1/2)*exp(x)*(exp(x)-x-1)^2 (with offset 4). - Enrique Navarrete, Feb 14 2025