A112521 Sequence related to NOR bracketings.
0, 1, 0, 6, 4, 60, 84, 700, 1440, 8910, 23100, 120120, 360360, 1684956, 5552064, 24302520, 85101456, 357502860, 1302562404, 5333981796, 19947127200, 80408748420, 305922388200, 1221485157360, 4701015343440, 18664243014300
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A055392.
Programs
-
Mathematica
a[n_]:= Sum[(-1)^j*Binomial[2*j, j]*Binomial[2*n-j-2, n-j-1], {j,0,n-1}]; Table[a[n], {n,0,30}] (* G. C. Greubel, Jan 11 2022 *)
-
PARI
a(n) = sum(j=0,n, (-1)^(j-1)*binomial(2*n-j-1, n-j)*binomial(2*(j-1), j-1)); \\ Michel Marcus, Aug 19 2014
-
Sage
def a(n): return n if (n<2) else binomial(2*n-2, n-1)*simplify( hypergeometric([-(n-1), 1/2], [2-2*n], -4) ) [a(n) for n in (0..30)] # G. C. Greubel, Jan 11 2022
Formula
a(n) = Sum_{j=0..n} (-1)^(j-1)*C(2*n-j-1, n-j)*C(2*(j-1), j-1). - corrected by Peter Bala, Aug 19 2014
a(n) = n*A055392(n), n>1.
a(n) = binomial(2*n-2, n-1)*Hypergeometric([-(n-1), 1/2], [2-2*n], -4) with a(0) = 0, a(1) = 1. - G. C. Greubel, Jan 11 2022
Comments