cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112521 Sequence related to NOR bracketings.

Original entry on oeis.org

0, 1, 0, 6, 4, 60, 84, 700, 1440, 8910, 23100, 120120, 360360, 1684956, 5552064, 24302520, 85101456, 357502860, 1302562404, 5333981796, 19947127200, 80408748420, 305922388200, 1221485157360, 4701015343440, 18664243014300
Offset: 0

Views

Author

Paul Barry, Sep 09 2005

Keywords

Comments

Conjecture: Starting with n=1, a(n) is the main diagonal of the array defined as T(1,1) = 1, T(i,j) = 0 if i<1 or j<1, T(n,k) = T(n,k-2) + T(n,k-1) -2*T(n-1,k-1) + T(n-1,k) + T(n-2,k). - Gerald McGarvey, Oct 07 2008

Crossrefs

Cf. A055392.

Programs

  • Mathematica
    a[n_]:= Sum[(-1)^j*Binomial[2*j, j]*Binomial[2*n-j-2, n-j-1], {j,0,n-1}];
    Table[a[n], {n,0,30}] (* G. C. Greubel, Jan 11 2022 *)
  • PARI
    a(n) = sum(j=0,n, (-1)^(j-1)*binomial(2*n-j-1, n-j)*binomial(2*(j-1), j-1)); \\ Michel Marcus, Aug 19 2014
    
  • Sage
    def a(n): return n if (n<2) else binomial(2*n-2, n-1)*simplify( hypergeometric([-(n-1), 1/2], [2-2*n], -4) )
    [a(n) for n in (0..30)] # G. C. Greubel, Jan 11 2022

Formula

a(n) = Sum_{j=0..n} (-1)^(j-1)*C(2*n-j-1, n-j)*C(2*(j-1), j-1). - corrected by Peter Bala, Aug 19 2014
a(n) = n*A055392(n), n>1.
a(n) = binomial(2*n-2, n-1)*Hypergeometric([-(n-1), 1/2], [2-2*n], -4) with a(0) = 0, a(1) = 1. - G. C. Greubel, Jan 11 2022