cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112524 a(n) = a(n-1) + 2*n^2 with a(1) = 1.

Original entry on oeis.org

1, 9, 27, 59, 109, 181, 279, 407, 569, 769, 1011, 1299, 1637, 2029, 2479, 2991, 3569, 4217, 4939, 5739, 6621, 7589, 8647, 9799, 11049, 12401, 13859, 15427, 17109, 18909, 20831, 22879, 25057, 27369, 29819, 32411, 35149, 38037, 41079, 44279, 47641
Offset: 1

Views

Author

Dennis Farr (dfarr(AT)comcast.net), Dec 13 2005

Keywords

Comments

This is the total number of operations or total storage if a process first replaces a square array by an array one smaller, repeatedly down to 1 and then regrows the array to the original size.

Crossrefs

Cf. A006331.

Programs

  • Magma
    [n*(n+1)*(2*n+1)/3 - 1: n in [1..40]]; // G. C. Greubel, Jan 12 2022
  • Maple
    a[1]:=1: for n from 2 to 50 do a[n]:=a[n-1]+2*n^2 od: seq(a[n],n=1..50); # Emeric Deutsch, Feb 13 2006
    a:=n->sum(k^2, k=1..n):seq(a(n)+sum(k^2, k=2..n), n=1...40); # Zerinvary Lajos, Jun 11 2008
  • Mathematica
    Table[n*(n+1)*(2n+1)/3 - 1, {n, 50}] (* Stefan Steinerberger, Mar 11 2006 *)
    2*Accumulate[Range[50]^2]-1 (* or *) LinearRecurrence[{4,-6,4,-1},{1,9,27,59},50] (* Harvey P. Dale, Dec 03 2012 *)
  • Sage
    [n*(n+1)*(2*n+1)/3 - 1 for n in (1..40)] # G. C. Greubel, Jan 12 2022
    

Formula

Twice the sum of the first n square numbers - 1 = n*(n + 1)*(2n + 1)/3 - 1. - Stefan Steinerberger, Mar 11 2006
From R. J. Mathar, Sep 09 2008: (Start)
G.f.: x*(1 +5*x -3*x^2 +x^3)/(1-x)^4.
a(n) = A006331(n) - 1. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), a(1)=1, a(2)=9, a(3)=27, a(4)=59. - Harvey P. Dale, Dec 03 2012
E.g.f.: ( 3 + (-3 + 6*x + 9*x^2 + 2*x^3)*exp(x) )/3. - G. C. Greubel, Jan 12 2022

Extensions

Definition corrected by Alexandre Wajnberg, Jan 02 2006
More terms from Emeric Deutsch, Feb 13 2006
More terms from Stefan Steinerberger, Mar 11 2006