A112626 Triangle read by rows: T(n,k) = Sum_{j=0..n} binomial(n, k+j)*2^(n-k-j).
1, 3, 1, 9, 5, 1, 27, 19, 7, 1, 81, 65, 33, 9, 1, 243, 211, 131, 51, 11, 1, 729, 665, 473, 233, 73, 13, 1, 2187, 2059, 1611, 939, 379, 99, 15, 1, 6561, 6305, 5281, 3489, 1697, 577, 129, 17, 1, 19683, 19171, 16867, 12259, 6883, 2851, 835, 163, 19, 1, 59049, 58025
Offset: 0
Examples
Triangle begins as: 1; 3, 1; 9, 5, 1; 27, 19, 7, 1; 81, 65, 33, 9, 1; 243, 211, 131, 51, 11, 1; 729, 665, 473, 233, 73, 13, 1...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
GAP
Flat(List([0..10], n-> List([0..n], k-> Sum([k..n], j-> Binomial(n, j)*2^(n-j)) ))); # G. C. Greubel, Nov 18 2019
-
Magma
[&+[Binomial(n,j)*2^(n-j): j in [k..n]]: k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
-
Maple
seq(seq( add(binomial(n,j)*2^(n-j), j=k..n), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
-
Mathematica
Flatten[Table[Sum[Binomial[n, k+m]*2^(n-k-m), {m, 0, n}], {n, 0, 10}, {k, 0, n}]]
-
PARI
T(n,k) = sum(j=k,n, binomial(n,j)*2^(n-j)); \\ G. C. Greubel, Nov 18 2019
-
Sage
[[sum(binomial(n,j)*2^(n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
Formula
T(n, k) = Sum_{j=0..n} binomial(n, k+j)*2^(n-k-j).
O.g.f. (by columns): x^k /((1-3*x)*(1-2*x)^k). - Frank Ruskey and class
T(n,k) = Sum_{j=k..n} binomial(n,j)*2^(n-j). - Ross La Haye, May 02 2006
Binomial transform (by columns) of A055248.
Extensions
More terms from Ross La Haye, Dec 31 2006
Comments