A000244
Powers of 3: a(n) = 3^n.
Original entry on oeis.org
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987
Offset: 0
G.f. = 1 + 3*x + 9*x^2 + 27*x^3 + 81*x^4 + 243*x^5 + 729*x^6 + 2187*x^7 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- T. Banchoff, Counting the Faces of Higher-Dimensional Cubes, Beyond the Third Dimension: Geometry, computer graphics and higher dimensions, Scientific American Library, 1996.
- Arno Berger and Theodore P. Hill, Benford's law strikes back: no simple explanation in sight for mathematical gem, The Mathematical Intelligencer 33.1 (2011): 85-91.
- A. Bostan, Computer Algebra for Lattice Path Combinatorics, Séminaire de Combinatoire Ph. Flajolet, Mar 28 2013.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 7
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 268
- Milan Janjic, Enumerative Formulae for Some Functions on Finite Sets
- Tanya Khovanova, Recursive Sequences
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Clique.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Hanoi Graph.
- Eric Weisstein's World of Mathematics, Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Ladder Rung Graph.
- Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph.
- Eric Weisstein's World of Mathematics, Vertex Cover.
- Doron Zeilberger, The Amazing 3^n Theorem and its even more Amazing Proof [Discovered by Xavier G. Viennot and his École Bordelaise gang], arXiv:1208.2258, 2012.
- Index entries for "core" sequences
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (3).
- Index entries for sequences related to Benford's law
Cf.
A008776 (2*a(n), and first differences).
The following are parallel families:
A000079 (2^n),
A004094 (2^n reversed),
A028909 (2^n sorted up),
A028910 (2^n sorted down),
A036447 (double and reverse),
A057615 (double and sort up),
A263451 (double and sort down);
A000244 (3^n),
A004167 (3^n reversed),
A321540 (3^n sorted up),
A321539 (3^n sorted down),
A163632 (triple and reverse),
A321542 (triple and sort up),
A321541 (triple and sort down).
-
a000244 = (3 ^) -- Reinhard Zumkeller, Nov 14 2011
a000244_list = iterate (* 3) 1 -- Reinhard Zumkeller, Apr 04 2012
-
[ 3^n : n in [0..30] ]; // Wesley Ivan Hurt, Jul 04 2014
-
A000244 := n->3^n; [ seq(3^n, n=0..50) ];
A000244:=-1/(-1+3*z); # Simon Plouffe in his 1992 dissertation.
-
Table[3^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
3^Range[0, 30] (* Wesley Ivan Hurt, Jul 04 2014 *)
LinearRecurrence[{3}, {1}, 20] (* Eric W. Weisstein, Sep 21 2017 *)
CoefficientList[Series[1/(1 - 3 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
NestList[3#&,1,30] (* Harvey P. Dale, Feb 20 2020 *)
-
makelist(3^n, n, 0, 30); /* Martin Ettl, Nov 05 2012 */
-
A000244(n) = 3^n \\ Michael B. Porter, Nov 03 2009
-
def A000244(n): return 3**n # Chai Wah Wu, Nov 10 2022
-
val powersOf3: LazyList[BigInt] = LazyList.iterate(1: BigInt)(_ * 3)
(0 to 26).map(powersOf3()) // _Alonso del Arte, May 03 2020
A001047
a(n) = 3^n - 2^n.
Original entry on oeis.org
0, 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025, 175099, 527345, 1586131, 4766585, 14316139, 42981185, 129009091, 387158345, 1161737179, 3485735825, 10458256051, 31376865305, 94134790219, 282412759265, 847255055011, 2541798719465, 7625463267259, 22876524019505
Offset: 0
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 86-87.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..200
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Nathan Bliss, Ben Fulan, Stephen Lovett and Jeff Sommars, Strong divisibility, cyclotomic polynomials and iterated polynomials, Am. Math. Monthly, Vol. 120, No. 6 (2013), pp. 519-536.
- John Elias, Illustration: Sierpinski half-hexagons, Illustration: Nicomachus triangle 2^n & 3^n correlation, Koch Snowflake Fractal Configuration.
- Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
- Samuele Giraudo, Combinatorial operads from monoids, Journal of Algebraic Combinatorics, Vol. 41, No. 2 (2015), pp. 493-538; arXiv preprint, arXiv preprint arXiv:1306.6938 [math.CO], 2013-2015.
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, Advances in Applied Mathematics, Vol. 77 (2016), pp. 1-42; arXiv preprint, arXiv:1603.01040 [math.CO], 2016.
- Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 397.
- B. D. Josephson and J. M. Boardman, Problems Drive 1961, Eureka, The Journal of the Archimedeans, Vol. 24 (1961), p. 20; entire volume.
- Germain Kreweras, Inversion des polynômes de Bell bidimensionnels et application au dénombrement des relations binaires connexes, C. R. Acad. Sci. Paris Ser. A-B, Vol. 268 (1969), pp. A577-A579.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Richard Miles, Synchronization points and associated dynamical invariants, Trans. Amer. Math. Soc., Vol. 365, No. 10 (2013), pp. 5503-5524.
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
- Jon Perry, Relation to Collatz problem.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Kalika Prasad, Munesh Kumari, Rabiranjan Mohanta, and Hrishikesh Mahato, The sequence of higher order Mersenne numbers and associated binomial transforms, arXiv:2307.08073 [math.NT], 2023.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 4.
- Ambrosio Valencia-Romero and P. T. Grogan, The strategy dynamics of collective systems: Underlying hindrances beyond two-actor coordination, PLOS ONE 19(4): e0301394 (S1 Appendix).
- Index entries for linear recurrences with constant coefficients, signature (5,-6).
Cf.
A000225,
A016189,
A036561,
A097934,
A038876,
A127071,
A127072,
A127073,
A127074,
A002997,
A057468,
A109235,
A281890,
A329064,
A350771.
-
a001047 n = a001047_list !! n
a001047_list = map fst $ iterate (\(u, v) -> (3 * u + v, 2 * v)) (0, 1)
-- Reinhard Zumkeller, Jun 09 2013
-
[3^n - 2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
-
seq(3^n - 2^n, n=0..40); # Giorgio Balzarotti, Nov 18 2006
A001047:=1/(3*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
-
Table[ 3^n - 2^n, {n, 0, 25} ]
LinearRecurrence[{5, -6}, {0, 1}, 25] (* Harvey P. Dale, Aug 18 2011 *)
Numerator@NestList[(3#+1)/2&,1/2,100] (* Zak Seidov, Oct 03 2011 *)
-
{a(n) = 3^n - 2^n};
-
[3**n - 2**n for n in range(25)] # Ross La Haye, Aug 19 2005; corrected by David Radcliffe, Jun 26 2016
-
[lucas_number1(n, 5, 6) for n in range(26)] # Zerinvary Lajos, Apr 22 2009
A006234
a(n) = n*3^(n-4).
Original entry on oeis.org
1, 4, 15, 54, 189, 648, 2187, 7290, 24057, 78732, 255879, 826686, 2657205, 8503056, 27103491, 86093442, 272629233, 860934420, 2711943423, 8523250758, 26732013741, 83682825624, 261508830075, 815907549834, 2541865828329
Offset: 3
For n=3, the total number of parts is (3+2)3^(3+2-4)=(5)(3)=15 (each part indicated by "[]"): [3]; [2,1]; [1,2]; [2],[1]; [1],[2]; [1,1,1]; [1,1],[1]; [1],[1,1]; [1],[1],[1]. Note that these 15 parts are arranged into 9 = A000244(3-1)compositions. - _Gregory L. Simay_, May 27 2017
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607.
- Guillermo Esteban, Clemens Huemer, and Rodrigo I. Silveira, New production matrices for geometric graphs, arXiv:2003.00524 [math.CO], 2020.
- Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Book Graph.
- Eric Weisstein's World of Mathematics, Spanning Tree.
- Index entries for linear recurrences with constant coefficients, signature (6,-9).
-
[ n*3^(n-4): n in [3..30] ]; // Vincenzo Librandi, Aug 19 2011
-
Table[n 3^(n-4), {n, 3, 30}] (* or *)
CoefficientList[Series[(1-2 x)/(1-3 x)^2, {x,0,30}], x] (* Michael De Vlieger, May 28 2017 *)
LinearRecurrence[{6,-9},{1,4},30] (* Harvey P. Dale, Aug 17 2020 *)
-
a(n)=n*3^(n-4) \\ Charles R Greathouse IV, Sep 24 2015
-
[n*3^(n-4) for n in range(3,31)] # G. C. Greubel, Dec 27 2023
A055248
Triangle of partial row sums of triangle A007318(n,m) (Pascal's triangle). Triangle A008949 read backwards. Riordan (1/(1-2x), x/(1-x)).
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 11, 5, 1, 32, 31, 26, 16, 6, 1, 64, 63, 57, 42, 22, 7, 1, 128, 127, 120, 99, 64, 29, 8, 1, 256, 255, 247, 219, 163, 93, 37, 9, 1, 512, 511, 502, 466, 382, 256, 130, 46, 10, 1, 1024, 1023, 1013, 968, 848, 638, 386, 176, 56, 11, 1
Offset: 0
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 4 3 1
3: 8 7 4 1
4: 16 15 11 5 1
5: 32 31 26 16 6 1
6: 64 63 57 42 22 7 1
7: 128 127 120 99 64 29 8 1
8: 256 255 247 219 163 93 37 9 1
9: 512 511 502 466 382 256 130 46 10 1
10: 1024 1023 1013 968 848 638 386 176 56 11 1
... Reformatted. - _Wolfdieter Lang_, Jan 09 2015
Fourth row polynomial (n=3): p(3,x)= 8 + 7*x + 4*x^2 + x^3.
The matrix inverse starts
1;
-2, 1;
2, -3, 1;
-2, 5, -4, 1;
2, -7, 9, -5, 1;
-2, 9, -16, 14, -6, 1;
2, -11, 25,- 30, 20, -7, 1;
-2, 13, -36, 55, -50, 27, -8, 1;
2, -15, 49, -91, 105, -77, 35, -9, 1;
-2, 17, -64, 140, -196, 182, -112, 44, -10, 1;
2, -19, 81, -204, 336, -378, 294, -156, 54, -11, 1;
...
which may be related to A029653. - _R. J. Mathar_, Mar 29 2013
From _Peter Bala_, Dec 23 2014: (Start)
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/1 \ /1 \ /1 \ /1 \
|2 1 ||0 1 ||0 1 | |2 1 |
|4 3 1 ||0 2 1 ||0 0 1 |... = |4 5 1 |
|8 7 4 1 ||0 4 3 1 ||0 0 2 1 | |8 19 9 1 |
|... ||0 8 7 4 1 ||0 0 4 3 1| |... |
|... ||... ||... | | |
= A143494. (End)
Matrix factorization of square array as P*U*transpose(P):
/1 \ /1 \ /1 1 1 1 ...\ /1 1 1 1 ...\
|1 1 ||1 1 ||0 1 2 3 ... | |2 3 4 5 ... |
|1 2 1 ||1 1 1 ||0 0 1 3 ... | = |4 7 11 16 ... |
|1 3 3 1 ||1 1 1 1 ||0 0 0 1 ... | |8 15 26 42 ... |
|... ||... ||... | |... |
- _Peter Bala_, Jan 13 2016
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Peter Bala, Notes on generalized Riordan arrays
- Peter Bala, A055248: Rapidly converging series for log(2) and Pi
- Jean-Luc Baril, Javier F. González, and José L. Ramírez, Last symbol distribution in pattern avoiding Catalan words, Univ. Bourgogne (France, 2022).
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Norman Lindquist and Gerard Sierksma, Extensions of set partitions, Journal of Combinatorial Theory, Series A 31.2 (1981): 190-198. See Table I.
- L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
Column sequences:
A000079 (powers of 2, m=0),
A000225 (m=1),
A000295 (m=2),
A002662 (m=3),
A002663 (m=4),
A002664 (m=5),
A035038 (m=6),
A035039 (m=7),
A035040 (m=8),
A035041 (m=9),
A035042 (m=10).
-
a055248 n k = a055248_tabl !! n !! k
a055248_row n = a055248_tabl !! n
a055248_tabl = map reverse a008949_tabl
-- Reinhard Zumkeller, Jun 20 2015
-
T := (n,k) -> 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n + 1], [n-k + 2], 1/2).
seq(seq(simplify(T(n,k)), k=0..n),n=0..10); # Peter Luschny, Oct 10 2019
-
a[n_, m_] := Sum[ Binomial[n, m + j], {j, 0, n}]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Paul Barry *)
T[n_, k_] := Binomial[n, k] * Hypergeometric2F1[1, k - n, k + 1, -1];
Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* Peter Luschny, Oct 06 2023 *)
A228576
A triangle formed like generalized Pascal's triangle. The rule is T(n,k) = 2*T(n-1,k-1) + T(n-1,k), the left border is n and the right border is n^2 instead of 1.
Original entry on oeis.org
0, 1, 1, 2, 3, 4, 3, 7, 10, 9, 4, 13, 24, 29, 16, 5, 21, 50, 77, 74, 25, 6, 31, 92, 177, 228, 173, 36, 7, 43, 154, 361, 582, 629, 382, 49, 8, 57, 240, 669, 1304, 1793, 1640, 813, 64, 9, 73, 354, 1149, 2642, 4401, 5226, 4093, 1690, 81, 10, 91, 500, 1857, 4940, 9685, 14028, 14545, 9876, 3461, 100
Offset: 1
The start of the sequence as triangle array read by rows:
0;
1, 1;
2, 3, 4;
3, 7, 10, 9;
4, 13, 24, 29, 16;
5, 21, 50, 77, 74, 25;
...
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Rely Pellicer, David Alvo, Modified Pascal Triangle and Pascal Surfaces p.4
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- Rattanapol Wasutharat and Kantaphon Kuhapatanakul, The Generalized Pascal-Like Triangle and Applications Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 41, pp. 1989 - 1992
- Index entries for triangles and arrays related to Pascal's triangle
Cf. We denote generalized Pascal's like triangle with coefficients a, b and with L(n) on the left border and R(n) on the right border by (a,b,L(n),R(n)). The list of sequences for (1,1,L(n),R(n)) see
A228196;
A038207 (1,2,2^n,1),
A105728 (1, 2, 1, n+1),
A112468 (1,-1,1,1),
A112626 (1,2,3^n,1),
A119258 (2,1,1,1),
A119673 (3,1,1,1),
A119725 (3,2,1,1),
A119726 (4,2,1,1),
A119727 (5,2,1,1),
A209705 (2,1,n+1,0);
A002061 (column 2),
A000244 (sums of rows r of triangle array - (r-2)(r+1)/2).
-
T:= function(n,k)
if k=0 then return n;
elif k=n then return n^2;
else return 2*T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 13 2019
-
function T(n,k)
if k eq 0 then return n;
elif k eq n then return n^2;
else return 2*T(n-1,k-1) + T(n-1,k);
end if;
return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2019
-
T := proc(n, k) option remember;
if k = 0 then RETURN(n) fi;
if k = n then RETURN(n^2) fi;
2*T(n-1, k-1) + T(n-1, k) end:
seq(seq(T(n,k),k=0..n),n=0..9); # Peter Luschny, Aug 26 2013
-
T[n_, 0]:= n; T[n_, n_]:= n^2; T[n_, k_]:= T[n, k] = 2*T[n-1, k-1]+T[n-1, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014 *)
-
T(n,k) = if(k==0, n, if(k==n, n^2, 2*T(n-1, k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 13 2019
-
@CachedFunction
def T(n, k):
if (k==0): return n
elif (k==n): return n^2
else: return 2*T(n-1,k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 13 2019
A066810
Expansion of x^2/((1-3*x)*(1-2*x)^2).
Original entry on oeis.org
0, 0, 1, 7, 33, 131, 473, 1611, 5281, 16867, 52905, 163835, 502769, 1532883, 4651897, 14070379, 42456897, 127894979, 384799049, 1156756443, 3475250065, 10436235955, 31330727961, 94038321227, 282211432673, 846835624611, 2540926304233, 7623651327931, 22872765923121
Offset: 0
Column k=1 of
A238858 (with different offset).
-
List([0..30], n-> 3^n - 2^n - n*2^(n-1)); # G. C. Greubel, Nov 18 2019
-
[3^n-2^n-n*2^(n-1): n in [0..30]]; // Vincenzo Librandi, Nov 29 2015
-
seq(3^n - 2^n - n*2^(n-1), n=0..30); # G. C. Greubel, Nov 18 2019
-
RecurrenceTable[{a[n]==3*a[n-1] + (n-1) 2^(n-2), a[0]==0}, a, {n, 0, 30}] (* Geoffrey Critzer, Apr 14 2009 *)
CoefficientList[Series[x^2/((1-3x)(1-2x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 29 2015 *)
-
a(n) = 3^n -2^n -n*2^(n-1) \\ Harry J. Smith, Mar 29 2010
-
[3^n - 2^n - n*2^(n-1) for n in (0..30)] # G. C. Greubel, Nov 18 2019
A209149
Triangle of coefficients of polynomials v(n,x) jointly generated with A209146; see the Formula section.
Original entry on oeis.org
1, 3, 1, 6, 5, 1, 12, 16, 7, 1, 24, 44, 30, 9, 1, 48, 112, 104, 48, 11, 1, 96, 272, 320, 200, 70, 13, 1, 192, 640, 912, 720, 340, 96, 15, 1, 384, 1472, 2464, 2352, 1400, 532, 126, 17, 1, 768, 3328, 6400, 7168, 5152, 2464, 784, 160, 19, 1, 1536, 7424
Offset: 1
First five rows:
1;
3, 1;
6, 5, 1;
12, 16, 7, 1;
24, 44, 30, 9, 1;
First three polynomials v(n,x): 1, 3 + x, 6 + 5x + x^2.
v(1,x) = 1
v(2,x) = 3 + x
v(3,x) = (3 + x)*(2 + x)
v(4,x) = (3 + x)*(2 + x)^2
v(5,x) = (3 + x)*(2 + x)^3
v(n,x) = (3 + x)*(2 + x)^(n-2)for n > 1. - _Philippe Deléham_, Mar 08 2012
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209148 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209149 *)
Showing 1-7 of 7 results.
Comments