cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000244 Powers of 3: a(n) = 3^n.

Original entry on oeis.org

1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 3), L(1, 3), P(1, 3), T(1, 3). Essentially same as Pisot sequences E(3, 9), L(3, 9), P(3, 9), T(3, 9). See A008776 for definitions of Pisot sequences.
Number of (s(0), s(1), ..., s(2n+2)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2n + 2, s(0) = 1, s(2n+2) = 3. - Herbert Kociemba, Jun 10 2004
a(1) = 1, a(n+1) is the least number such that there are a(n) even numbers between a(n) and a(n+1). Generalization for the sequence of powers of k: 1, k, k^2, k^3, k^4, ... There are a(n) multiples of k-1 between a(n) and a(n+1). - Amarnath Murthy, Nov 28 2004
a(n) = sum of (n+1)-th row in Triangle A105728. - Reinhard Zumkeller, Apr 18 2005
With p(n) being the number of integer partitions of n, p(i) being the number of parts of the i-th partition of n, d(i) being the number of different parts of the i-th partition of n, m(i, j) being the multiplicity of the j-th part of the i-th partition of n, Sum_{i = 1..p(n)} being the sum over i and Product_{j = 1..d(i)} being the product over j, one has: a(n) = Sum_{i = 1..p(n)} (p(i)!/(Product_{j = 1..d(i)} m(i, j)!))*2^(p(i) - 1). - Thomas Wieder, May 18 2005
For any k > 1 in the sequence, k is the first prime power appearing in the prime decomposition of repunit R_k, i.e., of A002275(k). - Lekraj Beedassy, Apr 24 2006
a(n-1) is the number of compositions of compositions. In general, (k+1)^(n-1) is the number of k-levels nested compositions (e.g., 4^(n-1) is the number of compositions of compositions of compositions, etc.). Each of the n - 1 spaces between elements can be a break for one of the k levels, or not a break at all. - Franklin T. Adams-Watters, Dec 06 2006
Let S be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xSy if x is a subset of y. Then a(n) = |S|. - Ross La Haye, Dec 22 2006
From Manfred Boergens, Mar 28 2023: (Start)
With regard to the comment by Ross La Haye:
Cf. A001047 if either nonempty subsets are considered or x is a proper subset of y.
Cf. a(n+1) in A028243 if nonempty subsets are considered and x is a proper subset of y. (End)
If X_1, X_2, ..., X_n is a partition of the set {1, 2, ..., 2*n} into blocks of size 2 then, for n >= 1, a(n) is equal to the number of functions f : {1, 2, ..., 2*n} -> {1, 2} such that for fixed y_1, y_2, ..., y_n in {1, 2} we have f(X_i) <> {y_i}, (i = 1, 2, ..., n). - Milan Janjic, May 24 2007
This is a general comment on all sequences of the form a(n) = [(2^k)-1]^n for all positive integers k. Example 1.1.16 of Stanley's "Enumerative Combinatorics" offers a slightly different version. a(n) in the number of functions f:[n] into P([k]) - {}. a(n) is also the number of functions f:[k] into P([n]) such that the generalized intersection of f(i) for all i in [k] is the empty set. Where [n] = {1, 2, ..., n}, P([n]) is the power set of [n] and {} is the empty set. - Geoffrey Critzer, Feb 28 2009
a(n) = A064614(A000079(n)) and A064614(m)A000079(n). - Reinhard Zumkeller, Feb 08 2010
3^(n+1) = (1, 2, 2, 2, ...) dot (1, 1, 3, 9, ..., 3^n); e.g., 3^3 = 27 = (1, 2, 2, 2) dot (1, 1, 3, 9) = (1 + 2 + 6 + 18). - Gary W. Adamson, May 17 2010
a(n) is the number of generalized compositions of n when there are 3*2^i different types of i, (i = 1, 2, ...). - Milan Janjic, Sep 24 2010
For n >= 1, a(n-1) is the number of generalized compositions of n when there are 2^(i-1) different types of i, (i = 1, 2, ...). - Milan Janjic, Sep 24 2010
The sequence in question ("Powers of 3") also describes the number of moves of the k-th disk solving the [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle (cf. A183111 - A183125).
a(n) is the number of Stern polynomials of degree n. See A057526. - T. D. Noe, Mar 01 2011
Positions of records in the number of odd prime factors, A087436. - Juri-Stepan Gerasimov, Mar 17 2011
Sum of coefficients of the expansion of (1+x+x^2)^n. - Adi Dani, Jun 21 2011
a(n) is the number of compositions of n elements among {0, 1, 2}; e.g., a(2) = 9 since there are the 9 compositions 0 + 0, 0 + 1, 1 + 0, 0 + 2, 1 + 1, 2 + 0, 1 + 2, 2 + 1, and 2 + 2. [From Adi Dani, Jun 21 2011; modified by editors.]
Except the first two terms, these are odd numbers n such that no x with 2 <= x <= n - 2 satisfy x^(n-1) == 1 (mod n). - Arkadiusz Wesolowski, Jul 03 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 3-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Explanation from David Applegate, Feb 20 2017: (Start)
Since the preceding comment appears in a large number of sequences, it might be worth adding a proof.
The number of compositions of n into exactly k parts is binomial(n-1,k-1).
For a p-colored composition of n such that no adjacent parts have the same color, there are exactly p choices for the color of the first part, and p-1 choices for the color of each additional part (any color other than the color of the previous one). So, for a partition into k parts, there are p (p-1)^(k-1) valid colorings.
Thus the number of p-colored compositions of n into exactly k parts such that no adjacent parts have the same color is binomial(n-1,k-1) p (p-1)^(k-1).
The total number of p-colored compositions of n such that no adjacent parts have the same color is then
Sum_{k=1..n} binomial(n-1,k-1) * p * (p-1)^(k-1) = p^n.
To see this, note that the binomial expansion of ((p - 1) + 1)^(n - 1) = Sum_{k = 0..n - 1} binomial(n - 1, k) (p - 1)^k 1^(n - 1 - k) = Sum_{k = 1..n} binomial(n - 1, k - 1) (p - 1)^(k - 1).
(End)
Also, first and least element of the matrix [1, sqrt(2); sqrt(2), 2]^(n+1). - M. F. Hasler, Nov 25 2011
One-half of the row sums of the triangular version of A035002. - J. M. Bergot, Jun 10 2013
Form an array with m(0,n) = m(n,0) = 2^n; m(i,j) equals the sum of the terms to the left of m(i,j) and the sum of the terms above m(i,j), which is m(i,j) = Sum_{k=0..j-1} m(i,k) + Sum_{k=0..i-1} m(k,j). The sum of the terms in antidiagonal(n+1) = 4*a(n). - J. M. Bergot, Jul 10 2013
a(n) = A007051(n+1) - A007051(n), and A007051 are the antidiagonal sums of an array defined by m(0,k) = 1 and m(n,k) = Sum_{c = 0..k - 1} m(n, c) + Sum_{r = 0..n - 1} m(r, k), which is the sum of the terms to left of m(n, k) plus those above m(n, k). m(1, k) = A000079(k); m(2, k) = A045623(k + 1); m(k + 1, k) = A084771(k). - J. M. Bergot, Jul 16 2013
Define an array to have m(0,k) = 2^k and m(n,k) = Sum_{c = 0..k - 1} m(n, c) + Sum_{r = 0..n - 1} m(r, k), which is the sum of the terms to the left of m(n, k) plus those above m(n, k). Row n = 0 of the array comprises A000079, column k = 0 comprises A011782, row n = 1 comprises A001792. Antidiagonal sums of the array are a(n): 1 = 3^0, 1 + 2 = 3^1, 2 + 3 + 4 = 3^2, 4 + 7 + 8 + 8 = 3^3. - J. M. Bergot, Aug 02 2013
The sequence with interspersed zeros and o.g.f. x/(1 - 3*x^2), A(2*k) = 0, A(2*k + 1) = 3^k = a(k), k >= 0, can be called hexagon numbers. This is because the algebraic number rho(6) = 2*cos(Pi/6) = sqrt(3) of degree 2, with minimal polynomial C(6, x) = x^2 - 3 (see A187360, n = 6), is the length ratio of the smaller diagonal and the side in the hexagon. Hence rho(6)^n = A(n-1)*1 + A(n)*rho(6), in the power basis of the quadratic number field Q(rho(6)). One needs also A(-1) = 1. See also a Dec 02 2010 comment and the P. Steinbach reference given in A049310. - Wolfdieter Lang, Oct 02 2013
Numbers k such that sigma(3k) = 3k + sigma(k). - Jahangeer Kholdi, Nov 23 2013
All powers of 3 are perfect totient numbers (A082897), since phi(3^n) = 2 * 3^(n - 1) for n > 0, and thus Sum_{i = 0..n} phi(3^i) = 3^n. - Alonso del Arte, Apr 20 2014
The least number k > 0 such that 3^k ends in n consecutive decreasing digits is a 3-term sequence given by {1, 13, 93}. The consecutive increasing digits are {3, 23, 123}. There are 100 different 3-digit endings for 3^k. There are no k-values such that 3^k ends in '012', '234', '345', '456', '567', '678', or '789'. The k-values for which 3^k ends in '123' are given by 93 mod 100. For k = 93 + 100*x, the digit immediately before the run of '123' is {9, 5, 1, 7, 3, 9, 5, 1, 3, 7, ...} for x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}, respectively. Thus we see the digit before '123' will never be a 0. So there are no further terms. - Derek Orr, Jul 03 2014
All elements of A^n where A = (1, 1, 1; 1, 1, 1; 1, 1, 1). - David Neil McGrath, Jul 23 2014
Counts all walks of length n (open or closed) on the vertices of a triangle containing a loop at each vertex starting from any given vertex. - David Neil McGrath, Oct 03 2014
a(n) counts walks (closed) on the graph G(1-vertex;1-loop,1-loop,1-loop). - David Neil McGrath, Dec 11 2014
2*a(n-2) counts all permutations of a solitary closed walk of length (n) from the vertex of a triangle that contains 2 loops on each of the remaining vertices. In addition, C(m,k)=2*(2^m)*B(m+k-2,m) counts permutations of walks that contain (m) loops and (k) arcs. - David Neil McGrath, Dec 11 2014
a(n) is the sum of the coefficients of the n-th layer of Pascal's pyramid (a.k.a., Pascal's tetrahedron - see A046816). - Bob Selcoe, Apr 02 2016
Numbers n such that the trinomial x^(2*n) + x^n + 1 is irreducible over GF(2). Of these only the trinomial for n=1 is primitive. - Joerg Arndt, May 16 2016
Satisfies Benford's law [Berger-Hill, 2011]. - N. J. A. Sloane, Feb 08 2017
a(n-1) is also the number of compositions of n if the parts can be runs of any length from 1 to n, and can contain any integers from 1 to n. - Gregory L. Simay, May 26 2017
Also the number of independent vertex sets and vertex covers in the n-ladder rung graph n P_2. - Eric W. Weisstein, Sep 21 2017
Also the number of (not necessarily maximal) cliques in the n-cocktail party graph. - Eric W. Weisstein, Nov 29 2017
a(n-1) is the number of 2-compositions of n; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 15 2020
a(n) is the number of faces of any dimension (vertices, edges, square faces, etc.) of the n-dimensional hypercube. For example, the 0-dimensional hypercube is a point, and its only face is itself. The 1-dimensional hypercube is a line, which has two vertices and an edge. The 2-dimensional hypercube is a square, which has four vertices, four edges, and a square face. - Kevin Long, Mar 14 2023
Number of pairs (A,B) of subsets of M={1,2,...,n} with union(A,B)=M. For nonempty subsets cf. A058481. - Manfred Boergens, Mar 28 2023
From Jianing Song, Sep 27 2023: (Start)
a(n) is the number of disjunctive clauses of n variables up to equivalence. A disjunctive clause is a propositional formula of the form l_1 OR ... OR l_m, where l_1, ..., l_m are distinct elements in {x_1, ..., x_n, NOT x_1, ..., NOT x_n} for n variables x_1, ... x_n, and no x_i and NOT x_i appear at the same time. For each 1 <= i <= n, we can have neither of x_i or NOT x_i, only x_i or only NOT x_i appearing in a disjunctive clause, so the number of such clauses is 3^n. Viewing the propositional formulas of n variables as functions {0,1}^n -> {0,1}, a disjunctive clause corresponds to a function f such that the inverse image of 0 is of the form A_1 X ... X A_n, where A_i is nonempty for all 1 <= i <= n. Since each A_i has 3 choices ({0}, {1} or {0,1}), we also find that the number of disjunctive clauses of n variables is 3^n.
Equivalently, a(n) is the number of conjunctive clauses of n variables. (End)
The finite subsequence a(2), a(3), a(4), a(5) = 9, 27, 81, 243 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A007283 (see comment there). - Felix Huber, Feb 15 2024

Examples

			G.f. = 1 + 3*x + 9*x^2 + 27*x^3 + 81*x^4 + 243*x^5 + 729*x^6 + 2187*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008776 (2*a(n), and first differences).
a(n) = A092477(n, 2) for n > 0.
a(n) = A159991(n) / A009964(n).
Cf. A100772, A035002. Row sums of A125076 and A153279.
a(n) = A217764(0, n).
Cf. A046816, A006521, A014945, A275414 (multisets).
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

Formula

a(n) = 3^n.
a(0) = 1; a(n) = 3*a(n-1).
G.f.: 1/(1-3*x).
E.g.f.: exp(3*x).
a(n) = n!*Sum_{i + j + k = n, i, j, k >= 0} 1/(i!*j!*k!). - Benoit Cloitre, Nov 01 2002
a(n) = Sum_{k = 0..n} 2^k*binomial(n, k), binomial transform of A000079.
a(n) = A090888(n, 2). - Ross La Haye, Sep 21 2004
a(n) = 2^(2n) - A005061(n). - Ross La Haye, Sep 10 2005
a(n) = A112626(n, 0). - Ross La Haye, Jan 11 2006
Hankel transform of A007854. - Philippe Deléham, Nov 26 2006
a(n) = 2*StirlingS2(n+1,3) + StirlingS2(n+2,2) = 2*(StirlingS2(n+1,3) + StirlingS2(n+1,2)) + 1. - Ross La Haye, Jun 26 2008
a(n) = 2*StirlingS2(n+1, 3) + StirlingS2(n+2, 2) = 2*(StirlingS2(n+1, 3) + StirlingS2(n+1, 2)) + 1. - Ross La Haye, Jun 09 2008
Sum_{n >= 0} 1/a(n) = 3/2. - Gary W. Adamson, Aug 29 2008
If p(i) = Fibonacci(2i-2) and if A is the Hessenberg matrix of order n defined by A(i, j) = p(j-i+1), (i <= j), A(i, j) = -1, (i = j+1), and A(i, j) = 0 otherwise, then, for n >= 1, a(n-1) = det A. - Milan Janjic, May 08 2010
G.f. A(x) = M(x)/(1-M(x))^2, M(x) - o.g.f for Motzkin numbers (A001006). - Vladimir Kruchinin, Aug 18 2010
a(n) = A133494(n+1). - Arkadiusz Wesolowski, Jul 27 2011
2/3 + 3/3^2 + 2/3^3 + 3/3^4 + 2/3^5 + ... = 9/8. [Jolley, Summation of Series, Dover, 1961]
a(n) = Sum_{k=0..n} A207543(n,k)*4^(n-k). - Philippe Deléham, Feb 25 2012
a(n) = Sum_{k=0..n} A125185(n,k). - Philippe Deléham, Feb 26 2012
Sum_{n > 0} Mobius(n)/a(n) = 0.181995386702633887827... (see A238271). - Alonso del Arte, Aug 09 2012. See also the sodium 3s orbital energy in table V of J. Chem. Phys. 53 (1970) 348.
a(n) = (tan(Pi/3))^(2*n). - Bernard Schott, May 06 2022
a(n-1) = binomial(2*n-1, n) + Sum_{k >= 1} binomial(2*n, n+3*k)*(-1)^k. - Greg Dresden, Oct 14 2022
G.f.: Sum_{k >= 0} x^k/(1-2*x)^(k+1). - Kevin Long, Mar 14 2023

A001047 a(n) = 3^n - 2^n.

Original entry on oeis.org

0, 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025, 175099, 527345, 1586131, 4766585, 14316139, 42981185, 129009091, 387158345, 1161737179, 3485735825, 10458256051, 31376865305, 94134790219, 282412759265, 847255055011, 2541798719465, 7625463267259, 22876524019505
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the sum of the elements in the n-th row of triangle pertaining to A036561. - Amarnath Murthy, Jan 02 2002
Number of 2 X n binary arrays with a path of adjacent 1's and no path of adjacent 0's from top row to bottom row. - R. H. Hardin, Mar 21 2002
With offset 1, partial sums of A027649. - Paul Barry, Jun 24 2003
Number of distinct lines through the origin in the n-dimensional lattice of side length 2. A049691 has the values for the 2-dimensional lattice of side length n. - Joshua Zucker, Nov 19 2003
a(n+1)/(n+1)=(3*3^n-2*2^n)/(n+1) is the second binomial transform of the harmonic sequence 1/(n+1). - Paul Barry, Apr 19 2005
a(n+1) is the sum of n-th row of A036561. - Reinhard Zumkeller, May 14 2006
The sequence gives the sum of the lengths of the segments in Cantor's dust generating sequence up to the i-th step. Measurement unit = length of the segment of i-th step. - Giorgio Balzarotti, Nov 18 2006
Let T be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xTy if x is a proper subset of y. Then a(n) = |T|. - Ross La Haye, Dec 22 2006
From Alexander Adamchuk, Jan 04 2007: (Start)
a(n) is prime for n in A057468.
p divides a(p) - 1 for prime p.
Quotients (3^p - 2^p - 1)/p, where p = prime(n), are listed in A127071.
Numbers k such that k divides 3^k - 2^k - 1 are listed in A127072.
Pseudoprimes in A127072(n) include all powers of primes {2,3,7} and some composite numbers that are listed in A127073, which includes all Carmichael numbers A002997.
Numbers n such that n^2 divides 3^n - 2^n - 1 are listed in A127074.
5 divides a(2n).
5^2 divides a(2*5n).
5^3 divides a(2*5^2n).
5^4 divides a(2*5^3n).
7^2 divides a(6*7n).
13 divides a(4n).
13^2 divides a(4*13n).
19 divides a(3n).
19^2 divides a(3*19n).
23^2 divides a(11n).
23^3 divides a(11*23n).
23^4 divides a(11*23^2n).
29 divides a(7n).
p divides a((p-1)n) for prime p>3.
p divides a((p-1)/2) for prime p in A097934. Also primes p such that 6 is a square mod p, except {2,3}, A038876(n).
p^(k+1) divides a(p^k*(p-1)/2*n) for prime p in A097934.
p^(k+1) divides a(p^k*(p-1)*n) for prime p>3.
Note the exception that for p = 23, p^(k+2) divides a(p^k*(p-1)/2*n).
There are no more such exceptions for primes p up to 600000. (End)
a(n) divides a(q*(n+1)-1), for all q integer. Leonardo Sarasua, Apr 15 2024
Final digits of terms follow sequence 1,5,9,5. - Enoch Haga, Nov 26 2007
This is also the second column sequence of the Sheffer triangle A143494 (2-restricted Stirling2 numbers). See the e.g.f. given below. - Wolfdieter Lang, Oct 08 2011
Partial sums give A000392. - Jon Perry, Apr 05 2014
For n >= 1, this is also row 2 of A281890: when consecutive positive integers are written as a product of primes in nondecreasing order, "3" occurs in n-th position a(n) times out of every 6^n. - Peter Munn, May 17 2017
a(n) is the number of ternary sequences of length n which include the digit 2. For example, a(2)=5 since the sequences are 02,20,12,21,22. - Enrique Navarrete, Apr 05 2021
a(n-1) is the number of ways we can form disjoint unions of two nonempty subsets of [n] such that the union contains n. For example, for n = 3, a(2) = 5 since the disjoint unions are {1}U{3}, {1}U{2,3}, {2}U{3}, {2}U{1,3}, and {1,2}U{3}. Cf. A000392 if we drop the requirement that the union contains n. - Enrique Navarrete, Aug 24 2021
Configures as a composite Koch Snowflake Fractal (see illustration in links) based on the five-fold division of the Cantor Square/Cantor Dust Fractal of (9^n-4^n)/5 see my illustration in (A016153). - John Elias, Oct 13 2021
Number of pairs (A,B) where B is a subset of {1,2,...,n} and A is a proper subset of B. - Jianing Song, Jun 18 2022
From Manfred Boergens, Mar 29 2023: (Start)
With regard to the comments by Ross La Haye and Jianing Song: Omitting "proper" gives A000244.
Number of pairs (A,B) where B is a nonempty subset of {1,2,...,n} and A is a nonempty subset of B. For nonempty proper subsets see a(n+1) in A028243. (End)
a(n) is the number of n-digit numbers whose smallest decimal digit is 7. - Stefano Spezia, Nov 15 2023
a(n-1) is the number of all possible player-reduced binary games observed by each player in an nx2 game assuming the individual strategies of k < n - 1 players are fixed and the remaining n - k - 1 player will play as one, either maintaining their status quo strategies or jointly adopting an alternative strategy. - Ambrosio Valencia-Romero, Apr 11 2024

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 86-87.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = row sums of A091913, row 2 of A047969, column 1 of A090888 and column 1 of A038719.
Cf. partitions: A241766, A241759.
A diagonal of A262307.

Programs

  • Haskell
    a001047 n = a001047_list !! n
    a001047_list = map fst $ iterate (\(u, v) -> (3 * u + v, 2 * v)) (0, 1)
    -- Reinhard Zumkeller, Jun 09 2013
  • Magma
    [3^n - 2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
    
  • Maple
    seq(3^n - 2^n, n=0..40); # Giorgio Balzarotti, Nov 18 2006
    A001047:=1/(3*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
  • Mathematica
    Table[ 3^n - 2^n, {n, 0, 25} ]
    LinearRecurrence[{5, -6}, {0, 1}, 25] (* Harvey P. Dale, Aug 18 2011 *)
    Numerator@NestList[(3#+1)/2&,1/2,100] (* Zak Seidov, Oct 03 2011 *)
  • PARI
    {a(n) = 3^n - 2^n};
    
  • Python
    [3**n - 2**n for n in range(25)] # Ross La Haye, Aug 19 2005; corrected by David Radcliffe, Jun 26 2016
    
  • Sage
    [lucas_number1(n, 5, 6) for n in range(26)]  # Zerinvary Lajos, Apr 22 2009
    

Formula

G.f.: x/((1-2*x)*(1-3*x)).
a(n) = 5*a(n-1) - 6*a(n-2).
a(n) = 3*a(n-1) + 2^(n-1). - Jon Perry, Aug 23 2002
Starting 0, 0, 1, 5, 19, ... this is 3^n/3 - 2^n/2 + 0^n/6, the binomial transform of A086218. - Paul Barry, Aug 18 2003
a(n) = A083323(n)-1 = A056182(n)/2 = (A002783(n)-1)/2 = (A003063(n+2)-A003063(n+1))/2. - Ralf Stephan, Jan 12 2004
Binomial transform of A000225. - Ross La Haye, Feb 07 2005
a(n) = Sum_{k=0..n-1} binomial(n, k)*2^k. - Ross La Haye, Aug 20 2005
a(n) = 2^(2n) - A083324(n). - Ross La Haye, Sep 10 2005
a(n) = A112626(n, 1). - Ross La Haye, Jan 11 2006
E.g.f.: exp(3*x) - exp(2*x). - Mohammad K. Azarian, Jan 14 2009
a(n) = A217764(n,1). - Ross La Haye, Mar 27 2013
a(n) = 2*a(n-1) + 3^(n-1). - Toby Gottfried, Mar 28 2013
a(n) = A000244(n) - A000079(n). - Omar E. Pol, Mar 28 2013
a(n) = Sum_{k=0..2} Stirling1(2,k)*(k+1)^n = c_2^{(-n)}, poly-Cauchy numbers. - Takao Komatsu, Mar 28 2013
a(n) = A227048(n,A098294(n)). - Reinhard Zumkeller, Jun 30 2013
a(n+1) = Sum_{k=0..n} 2^k*3^(n-k). - J. M. Bergot, Mar 27 2018
Sum_{n>=1} 1/a(n) = A329064. - Amiram Eldar, Nov 20 2020
a(n) = (1/2)*Sum_{k=0..n} binomial(n, k)*(2^(n-k) + 2^k - 2).
a(n) = A001117(n) + 2*A000918(n) + 1. - Ambrosio Valencia-Romero, Mar 08 2022
a(n) = A000225(n) + A028243(n+1). - Ambrosio Valencia-Romero, Mar 09 2022
From Peter Bala, Jun 27 2025: (Start)
exp(Sum_{n >=1} a(2*n)/a(n)*x^n/n) = Sum_{n >= 0} a(n+1)*x^n.
exp(Sum_{n >=1} a(3*n)/a(n)*x^n/n) = 1 + 19*x + 247*x^2 + ... is the g.f. of A019443.
exp(Sum_{n >=1} a(4*n)/a(n)*x^n/n) = 1 + 65*x + 2743*x^2 + ... is the g.f. of A383754.
The following are all examples of telescoping series:
Sum_{n >= 1} 6^n/(a(n)*a(n+1)) = 2, since 6^n/(a(n)*a(n+1)) = b(n) - b(n+1), where b(n) = 2^n/a(n);
Sum_{n >= 1} 18^n/(a(n)*a(n+1)*a(n+2)) = 22/75, since 18^n/(a(n)*a(n+1)*a(n+2)) = c(n) - c(n+1), where c(n) = (5*6^n - 2*4^n)/(15*a(n)*a(n+1));
Sum_{n >= 1} 54^n/(a(n)*a(n+1)*a(n+2)*a(n+3)) = 634/48735 since 54^n/(a(n)*a(n+1)*a(n+2)*a(n+3)) = d(n) - d(n+1), where d(n) = (57*18^n - 38*12^n + 8*8^n)/(513*a(n)*a(n+1)*a(n+2)).
Sum_{n >= 1} 6^n/(a(n)*a(n+2)) = 14/25; Sum_{n >= 1} (-6)^n/(a(n)*a(n+2)) = -6/25.
Sum_{n >= 1} 6^n/(a(n)*a(n+3)) = 306/1805.
Sum_{n >= 1} 6^n/(a(n)*a(n+4)) = 4282/80275; Sum_{n >= 1} (-6)^n/(a(n)*a(n+4)) = -1698/80275. (End)

Extensions

Edited by Charles R Greathouse IV, Mar 24 2010

A006234 a(n) = n*3^(n-4).

Original entry on oeis.org

1, 4, 15, 54, 189, 648, 2187, 7290, 24057, 78732, 255879, 826686, 2657205, 8503056, 27103491, 86093442, 272629233, 860934420, 2711943423, 8523250758, 26732013741, 83682825624, 261508830075, 815907549834, 2541865828329
Offset: 3

Views

Author

Keywords

Comments

For n >= 1 a(n) is also the determinant of the n-3 X n-3 matrix with 4's on the diagonal and 1's elsewhere. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001
a(n+3) = det(M(n)) where M(n) is the n X n matrix with m(i,i) = 4, m(i,j) = i/j for i != j. - Benoit Cloitre, Feb 01 2003
Main diagonal of array defined by m(1,j) = j; m(i,1) = i and m(i,j) = m(i-1,j) + 2*m(i-1,j-1). - Benoit Cloitre, Jun 13 2003
a(n+3) is the number of words of length n on {A, B, C, D} with no D appearing anywhere to the right of an A. - Rob Pratt, Aug 04 2004
Number of spanning trees in the book graph of order n-2, i.e., S_{n-2} X P_2 (S_k = the star graph on k nodes) (conjectured). This conjecture is true - see Doslic (2013). - N. J. A. Sloane, Dec 28 2013
Conjecture: a(n+2) is the total number of parts used in the compositions of n if the parts can be runs of any length from 1 to n, and contain any integers from 1 to n. (The number of such compositions is given by A000244(n-1).) - Gregory L. Simay, May 27 2017
a(n+3) is the number of words of length n defined on 4 letters where one of the letters is used at most once. - Enrique Navarrete, Mar 14 2024

Examples

			For n=3, the total number of parts is (3+2)3^(3+2-4)=(5)(3)=15 (each part indicated by "[]"): [3]; [2,1]; [1,2]; [2],[1]; [1],[2]; [1,1,1]; [1,1],[1]; [1],[1,1]; [1],[1],[1]. Note that these 15 parts are arranged into 9 = A000244(3-1)compositions. - _Gregory L. Simay_, May 27 2017
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Binomial transform of A001792.

Programs

Formula

G.f.: (1-2*x)/(1-3*x)^2. - Simon Plouffe in his 1992 dissertation.
a(n+3) = Sum_{k=0..n} A112626(n, k). - Ross La Haye, Jan 11 2006
G.f.: Hypergeometric2F1([1,4],[3],3*x). - R. J. Mathar, Aug 09 2015
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=1} 1/a(n) = 81*log(3/2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 81*log(4/3). (End)
E.g.f.: x*(exp(3*x) - 3*x - 1)/27. - Stefano Spezia, Mar 04 2023
E.g.f. (with offset 0): exp(3*x)*(1+x). - Enrique Navarrete, Mar 14 2024

A055248 Triangle of partial row sums of triangle A007318(n,m) (Pascal's triangle). Triangle A008949 read backwards. Riordan (1/(1-2x), x/(1-x)).

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 11, 5, 1, 32, 31, 26, 16, 6, 1, 64, 63, 57, 42, 22, 7, 1, 128, 127, 120, 99, 64, 29, 8, 1, 256, 255, 247, 219, 163, 93, 37, 9, 1, 512, 511, 502, 466, 382, 256, 130, 46, 10, 1, 1024, 1023, 1013, 968, 848, 638, 386, 176, 56, 11, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

In the language of the Shapiro et al. reference (also given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/((1-2*z)*(1-x*z/(1-z))).
Binomial transform of the all 1's triangle: as a Riordan array, it factors to give (1/(1-x),x/(1-x))(1/(1-x),x). Viewed as a number square read by antidiagonals, it has T(n,k) = Sum_{j=0..n} binomial(n+k,n-j) and is then the binomial transform of the Whitney square A004070. - Paul Barry, Feb 03 2005
Riordan array (1/(1-2x), x/(1-x)). Antidiagonal sums are A027934(n+1), n >= 0. - Paul Barry, Jan 30 2005; edited by Wolfdieter Lang, Jan 09 2015
Eigensequence of the triangle = A005493: (1, 3, 10, 37, 151, 674, ...); row sums of triangles A011971 and A159573. - Gary W. Adamson, Apr 16 2009
Read as a square array, this is the generalized Riordan array ( 1/(1 - 2*x), 1/(1 - x) ) as defined in the Bala link (p. 5), which factorizes as ( 1/(1 - x), x/(1 - x) )*( 1/(1 - x), x )*( 1, 1 + x ) = P*U*transpose(P), where P denotes Pascal's triangle, A007318, and U is the lower unit triangular array with 1's on or below the main diagonal. - Peter Bala, Jan 13 2016

Examples

			The triangle a(n,m) begins:
n\m    0    1    2   3   4   5   6   7  8  9 10 ...
0:     1
1:     2    1
2:     4    3    1
3:     8    7    4   1
4:    16   15   11   5   1
5:    32   31   26  16   6   1
6:    64   63   57  42  22   7   1
7:   128  127  120  99  64  29   8   1
8:   256  255  247 219 163  93  37   9  1
9:   512  511  502 466 382 256 130  46 10  1
10: 1024 1023 1013 968 848 638 386 176 56 11  1
... Reformatted. - _Wolfdieter Lang_, Jan 09 2015
Fourth row polynomial (n=3): p(3,x)= 8 + 7*x + 4*x^2 + x^3.
The matrix inverse starts
   1;
  -2,   1;
   2,  -3,   1;
  -2,   5,  -4,    1;
   2,  -7,   9,   -5,    1;
  -2,   9, -16,   14,   -6,    1;
   2, -11,  25,-  30,   20,   -7,    1;
  -2,  13, -36,   55,  -50,   27,   -8,    1;
   2, -15,  49,  -91,  105,  -77,   35,   -9,  1;
  -2,  17, -64,  140, -196,  182, -112,   44, -10,   1;
   2, -19,  81, -204,  336, -378,  294, -156,  54, -11, 1;
   ...
which may be related to A029653. - _R. J. Mathar_, Mar 29 2013
From _Peter Bala_, Dec 23 2014: (Start)
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/1      \ /1        \ /1       \       /1       \
|2 1     ||0 1       ||0 1      |      |2  1     |
|4 3 1   ||0 2 1     ||0 0 1    |... = |4  5 1   |
|8 7 4 1 ||0 4 3 1   ||0 0 2 1  |      |8 19 9 1 |
|...     ||0 8 7 4 1 ||0 0 4 3 1|      |...      |
|...     ||...       ||...      |      |         |
= A143494. (End)
Matrix factorization of square array as P*U*transpose(P):
/1      \ /1        \ /1 1 1 1 ...\    /1  1  1  1 ...\
|1 1     ||1 1       ||0 1 2 3 ... |   |2  3  4  5 ... |
|1 2 1   ||1 1 1     ||0 0 1 3 ... | = |4  7 11 16 ... |
|1 3 3 1 ||1 1 1 1   ||0 0 0 1 ... |   |8 15 26 42 ... |
|...     ||...       ||...         |   |...            |
- _Peter Bala_, Jan 13 2016
		

Crossrefs

Column sequences: A000079 (powers of 2, m=0), A000225 (m=1), A000295 (m=2), A002662 (m=3), A002663 (m=4), A002664 (m=5), A035038 (m=6), A035039 (m=7), A035040 (m=8), A035041 (m=9), A035042 (m=10).
Row sums: A001792(n) = A055249(n, 0).
Alternating row sums: A011782.
Cf. A011971, A159573. - Gary W. Adamson, Apr 16 2009

Programs

  • Haskell
    a055248 n k = a055248_tabl !! n !! k
    a055248_row n = a055248_tabl !! n
    a055248_tabl = map reverse a008949_tabl
    -- Reinhard Zumkeller, Jun 20 2015
  • Maple
    T := (n,k) -> 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n + 1], [n-k + 2], 1/2).
    seq(seq(simplify(T(n,k)), k=0..n),n=0..10); # Peter Luschny, Oct 10 2019
  • Mathematica
    a[n_, m_] := Sum[ Binomial[n, m + j], {j, 0, n}]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Paul Barry *)
    T[n_, k_] := Binomial[n, k] * Hypergeometric2F1[1, k - n, k + 1, -1];
    Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]]  (* Peter Luschny, Oct 06 2023 *)

Formula

a(n, m) = A008949(n, n-m), if n > m >= 0.
a(n, m) = Sum_{k=m..n} A007318(n, k) (partial row sums in columns m).
Column m recursion: a(n, m) = Sum_{j=m..n-1} a(j, m) + A007318(n, m) if n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (1/(1-2*x))*(x/(1-x))^m, m >= 0.
a(n, m) = Sum_{j=0..n} binomial(n, m+j). - Paul Barry, Feb 03 2005
Inverse binomial transform (by columns) of A112626. - Ross La Haye, Dec 31 2006
T(2n,n) = A032443(n). - Philippe Deléham, Sep 16 2009
From Peter Bala, Dec 23 2014: (Start)
Exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(8 + 7*x + 4*x^2/2! + x^3/3!) = 8 + 15*x + 26*x^2/2! + 42*x^3/3! + 64*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ).
Let M denote the present triangle. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A143494 (but with a different offset). See the Example section. Cf. A106516. (End)
a(n,m) = Sum_{p=m..n} 2^(n-p)*binomial(p-1,m-1), n >= m >= 0, else 0. - Wolfdieter Lang, Jan 09 2015
T(n, k) = 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n+1], [n-k+2], 1/2). - Peter Luschny, Oct 10 2019
T(n, k) = binomial(n, k)*hypergeom([1, k - n], [k + 1], -1). - Peter Luschny, Oct 06 2023
n-th row polynomial R(n, x) = (2^n - x*(1 + x)^n)/(1 - x). These polynomials can be used to find series acceleration formulas for the constants log(2) and Pi. - Peter Bala, Mar 03 2025

A228576 A triangle formed like generalized Pascal's triangle. The rule is T(n,k) = 2*T(n-1,k-1) + T(n-1,k), the left border is n and the right border is n^2 instead of 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 3, 7, 10, 9, 4, 13, 24, 29, 16, 5, 21, 50, 77, 74, 25, 6, 31, 92, 177, 228, 173, 36, 7, 43, 154, 361, 582, 629, 382, 49, 8, 57, 240, 669, 1304, 1793, 1640, 813, 64, 9, 73, 354, 1149, 2642, 4401, 5226, 4093, 1690, 81, 10, 91, 500, 1857, 4940, 9685, 14028, 14545, 9876, 3461, 100
Offset: 1

Author

Boris Putievskiy, Aug 26 2013

Keywords

Examples

			The start of the sequence as triangle array read by rows:
  0;
  1,  1;
  2,  3,  4;
  3,  7, 10,  9;
  4, 13, 24, 29, 16;
  5, 21, 50, 77, 74, 25;
...
		

Crossrefs

Cf. We denote generalized Pascal's like triangle with coefficients a, b and with L(n) on the left border and R(n) on the right border by (a,b,L(n),R(n)). The list of sequences for (1,1,L(n),R(n)) see A228196;
A038207 (1,2,2^n,1), A105728 (1, 2, 1, n+1), A112468 (1,-1,1,1), A112626 (1,2,3^n,1), A119258 (2,1,1,1), A119673 (3,1,1,1), A119725 (3,2,1,1), A119726 (4,2,1,1), A119727 (5,2,1,1), A209705 (2,1,n+1,0);
A002061 (column 2), A000244 (sums of rows r of triangle array - (r-2)(r+1)/2).

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return n;
        elif k=n then return n^2;
        else return 2*T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 13 2019
  • Magma
    function T(n,k)
      if k eq 0 then return n;
      elif k eq n then return n^2;
      else return 2*T(n-1,k-1) + T(n-1,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2019
    
  • Maple
    T := proc(n, k) option remember;
    if k = 0 then RETURN(n) fi;
    if k = n then RETURN(n^2) fi;
    2*T(n-1, k-1) + T(n-1, k) end:
    seq(seq(T(n,k),k=0..n),n=0..9);  # Peter Luschny, Aug 26 2013
  • Mathematica
    T[n_, 0]:= n; T[n_, n_]:= n^2; T[n_, k_]:= T[n, k] = 2*T[n-1, k-1]+T[n-1, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014 *)
  • PARI
    T(n,k) = if(k==0, n, if(k==n, n^2, 2*T(n-1, k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 13 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): return n
        elif (k==n): return n^2
        else: return 2*T(n-1,k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 13 2019
    

Formula

T(n, k) = 2*T(n-1, k-1) + T(n-1, k) for n,k >=0, with T(n,0) = n, T(n,n) = n^2.
Closed-form formula for generalized Pascal's triangle. Let a,b be any numbers. The rule is T(n, k) = a*T(n-1, k-1) + b*T(n-1, k) for n,k >0. Let L(m) and R(m) be the left border and the right border generalized Pascal's triangle, respectively.
As table read by antidiagonals T(n,k) = Sum_{m1=1..n} a^(n-m1) * b^k*R(m1)*C(n+k-m1-1,n-m1) + Sum_{m2=1..k} a^n*b^(k-m2)*L(m2)*C(n+k-m2-1,k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} a^(i-m1)*b^j*R(m1)*C(i+j-m1-1,i-m1) + Sum_{m2=1..j} a^i*b^(j-m2)*L(m2)*C(i+j-m2-1,j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2); n>0.
Some special cases. If a=b=1, then the closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196.
If a=0, then as table read by antidiagonals T(n,k)=b*R(n), as linear sequence a(n)=b*R(i), where i=n-t*(t+1)/2-1, t=floor((-1+sqrt(8*n-7))/2); n>0. The sequence a(n) is the reluctant sequence of sequence b*R(n) - a(n) is triangle array read by rows: row number k coincides with first k elements of the sequence b*R(n). Similarly for b=0, we get T(n,k)=a*L(k).
For this sequence L(m)=m and R(m)=m^2, a=2, b=1. As table read by antidiagonals T(n,k) = Sum_{m1=1..n} 2^(n-m1)*m1^2*C(n+k-m1-1,n-m1) + Sum_{m2=1..k} 2^n*m2*C(n+k-m2-1,k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} 2^(i-m1)*m1^2*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} 2^i*m2*C(i+j-m2-1,j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2); n>0.

A066810 Expansion of x^2/((1-3*x)*(1-2*x)^2).

Original entry on oeis.org

0, 0, 1, 7, 33, 131, 473, 1611, 5281, 16867, 52905, 163835, 502769, 1532883, 4651897, 14070379, 42456897, 127894979, 384799049, 1156756443, 3475250065, 10436235955, 31330727961, 94038321227, 282211432673, 846835624611, 2540926304233, 7623651327931, 22872765923121
Offset: 0

Author

N. J. A. Sloane, Jan 25 2002

Keywords

Comments

Binomial transform of A000295.
a(n) = A112626(n, 2). - Ross La Haye, Jan 11 2006
Let Q be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all x,y of P(A), xQy if x is a proper subset of y and |y| - |x| > 1. Then a(n) = |Q|. - Ross La Haye, Jan 11 2008
a(n) is the number of n-digit ternary sequences that have at least two 0's. - Geoffrey Critzer, Apr 14 2009

Crossrefs

Column k=1 of A238858 (with different offset).

Programs

  • GAP
    List([0..30], n-> 3^n - 2^n - n*2^(n-1)); # G. C. Greubel, Nov 18 2019
  • Magma
    [3^n-2^n-n*2^(n-1): n in [0..30]]; // Vincenzo Librandi, Nov 29 2015
    
  • Maple
    seq(3^n - 2^n - n*2^(n-1), n=0..30); # G. C. Greubel, Nov 18 2019
  • Mathematica
    RecurrenceTable[{a[n]==3*a[n-1] + (n-1) 2^(n-2), a[0]==0}, a, {n, 0, 30}] (* Geoffrey Critzer, Apr 14 2009 *)
    CoefficientList[Series[x^2/((1-3x)(1-2x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 29 2015 *)
  • PARI
    a(n) = 3^n -2^n -n*2^(n-1) \\ Harry J. Smith, Mar 29 2010
    
  • Sage
    [3^n - 2^n - n*2^(n-1) for n in (0..30)] # G. C. Greubel, Nov 18 2019
    

Formula

a(n) = 3^n - 2^n - n*2^(n-1).
From Ross La Haye, Apr 26 2006: (Start)
a(n) = A000244(n) - A001792(n).
a(n) = Sum_{k=2..n} binomial(n,k)2^(n-k). (End)
Inverse binomial transform of A086443. - Ross La Haye, Apr 29 2006
Convolution of A000244 beginning [0,1,3,9,27,81,...] and A001787. - Ross La Haye, Feb 15 2007
From Geoffrey Critzer, Apr 14 2009: (Start)
E.g.f.: exp(2*x)*(exp(x) - x - 1).
a(n) = 3*a(n-1) + (n-1)*2^(n-2). (End)

Extensions

Additional comments from Ross La Haye, Sep 27 2005

A209149 Triangle of coefficients of polynomials v(n,x) jointly generated with A209146; see the Formula section.

Original entry on oeis.org

1, 3, 1, 6, 5, 1, 12, 16, 7, 1, 24, 44, 30, 9, 1, 48, 112, 104, 48, 11, 1, 96, 272, 320, 200, 70, 13, 1, 192, 640, 912, 720, 340, 96, 15, 1, 384, 1472, 2464, 2352, 1400, 532, 126, 17, 1, 768, 3328, 6400, 7168, 5152, 2464, 784, 160, 19, 1, 1536, 7424
Offset: 1

Author

Clark Kimberling, Mar 07 2012

Keywords

Comments

Alternating row sums: 1,2,2,2,2,2,2,2,2,2,2,2,2,...
For a discussion and guide to related arrays, see A208510.
As triangle T(n,k) with 0 <= k <= n, it is (3, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 08 2012
A skew triangle of A209144. - Philippe Deléham, Mar 08 2012
Riordan array ( (1 + x)/(1 - 2*x), x/(1 - 2*x) ). Cf. A118800. Matrix inverse is a signed version of A112626. - Peter Bala, Jul 17 2013

Examples

			First five rows:
   1;
   3,  1;
   6,  5,  1;
  12, 16,  7, 1;
  24, 44, 30, 9, 1;
First three polynomials v(n,x): 1, 3 + x, 6 + 5x + x^2.
v(1,x) = 1
v(2,x) = 3 + x
v(3,x) = (3 + x)*(2 + x)
v(4,x) = (3 + x)*(2 + x)^2
v(5,x) = (3 + x)*(2 + x)^3
v(n,x) = (3 + x)*(2 + x)^(n-2)for n > 1. - _Philippe Deléham_, Mar 08 2012
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209148 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209149 *)

Formula

u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = u(n-1,x) + (x+1)*v(n-1,x) + 1,
where u(1,x)=1, v(1,x)=1.
As DELTA-triangle:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 08 2012
As DELTA-triangle: G.f. is (1+x)/(1-2*x-yx). - Philippe Deléham, Mar 08 2012
Showing 1-7 of 7 results.