A001792
a(n) = (n+2)*2^(n-1).
Original entry on oeis.org
1, 3, 8, 20, 48, 112, 256, 576, 1280, 2816, 6144, 13312, 28672, 61440, 131072, 278528, 589824, 1245184, 2621440, 5505024, 11534336, 24117248, 50331648, 104857600, 218103808, 452984832, 939524096, 1946157056, 4026531840, 8321499136, 17179869184, 35433480192
Offset: 0
a(0) = 1, a(1) = 2*1 + 1 = 3, a(2) = 2*3 + 2 = 8, a(3) = 2*8 + 4 = 20, a(4) = 2*20 + 8 = 48, a(5) = 2*48 + 16 = 112, a(6) = 2*112 + 32 = 256, ... - _Philippe Deléham_, Apr 19 2009
a(2) = 8 since there are 8 length-4 binary sequences with a subsequence of ones of length 2 or more, namely, 1111, 1110, 1101, 1011, 0111, 1100, 0110, and 0011. - _Dennis P. Walsh_, Oct 25 2012
G.f. = 1 + 3*x + 8*x^2 + 20*x^3 + 48*x^4 + 112*x^5 + 256*x^6 + 576*x^7 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. M. Stepin and A. T. Tagi-Zade, Words with restrictions, pp. 67-74 of Kvant Selecta: Combinatorics I, Amer. Math. Soc., 2001 (G_n on p. 70).
- T. D. Noe, Table of n, a(n) for n = 0..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Marco Abrate, Stefano Barbero, Umberto Cerruti and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", Discrete Math., Vol. 335 (2014), pp. 1-7. MR3248794.
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", arXiv:1409.6454 [math.NT], 2014.
- Milica Andelic, C. M. da Fonseca and A. Pereira, The mu-permanent, a new graph labeling, and a known integer sequence, arXiv preprint arXiv:1609.04208 [math.CO], 2016.
- Félix Balado and Guénolé C. M. Silvestre, Runs of Ones in Binary Strings, arXiv:2302.11532 [math.CO], 2023. See pp. 6-7.
- Jean-Luc Baril and Nathanaël Hassler, Intervals in a family of Fibonacci lattices, Univ. de Bourgogne (France, 2024). See p. 7.
- Neil J. Calkin, A curious binomial identity, Discr. Math., Vol. 131, No. 1-3 (1994), pp. 335-337.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs., Vol. 3 (2000), #00.1.5.
- Filippo Disanto and Simone Rinaldi, Symmetric convex permutominoes and involutions, PU. M. A., Vol. 22, No. 1 (2011), pp. 39-60.
- Frank Ellermann, Illustration of binomial transforms.
- David Eppstein, Non-crossing Hamiltonian Paths and Cycles in Output-Polynomial Time, arXiv:2303.00147 [cs.CG], 2023, pp. 2, 19.
- Guillermo Esteban, Clemens Huemer and Rodrigo I. Silveira, New production matrices for geometric graphs, arXiv:2003.00524 [math.CO], 2020.
- M. Hirschhorn, Calkin's binomial identity, Discr. Math., Vol. 159, No. 1-3 (1996), pp. 273-278.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 146.
- Milan Janjić, Two Enumerative Functions
- Milan Janjić and Boris Petković, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- Milan Janjić and Boris Petković, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- C. W. Jones, J. C. P. Miller, J. F. C. Conn and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A., Vol. 62, No. 2 (1946), pp. 187-203.
- Sergey Kitaev and Jeffrey B. Remmel, A note on p-Ascent Sequences, Preprint, 2016.
- Sergey Kitaev and Jeffrey Remmel, p-Ascent Sequences, arXiv preprint arXiv:1503.00914 [math.CO], 2015.
- Ivaylo Kortezov, problem 8.4 ("Задача 8.4" in Bulgarian) in National Math Contest "Atanas Radev" 2020.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Maohua Le, Two Classes of Smarandache Determinants, Scientia Magna, Vol. 2, No. 1 (2006), pp. 20-25.
- Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021.
- John Riordan and N. J. A. Sloane, Correspondence, 1974.
- N. J. A. Sloane, Transforms.
- I. Tasoulas, K. Manes, and A. Sapounakis, Hamiltonian intervals in the lattice of binary paths, Elect. J. Comb. (2024) Vol. 31, Issue 1, P1.39.
- Jun Wang and Zhizheng Zhang, On extensions of Calkin's binomial identities, Discrete Math., Vol. 274 (2004), 331-342.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
- Index entries for sequences related to Chebyshev polynomials.
-
List([0..35],n->(n+2)*2^(n-1)); # Muniru A Asiru, Sep 25 2018
-
a001792 n = a001792_list !! n
a001792_list = scanl1 (+) a045623_list
-- Reinhard Zumkeller, Jul 21 2013
-
[(n+2)*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Nov 10 2014
-
A001792 := n-> (n+2)*2^(n-1);
spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/4, n=2..30); # Zerinvary Lajos, Oct 09 2006
A001792:=-(-3+4*z)/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, which gives the sequence without the initial 1
G(x):=1/exp(2*x)*(1-x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(abs(f[n]),n=0..28 ); # Zerinvary Lajos, Apr 17 2009
a := n -> hypergeom([-n, 2], [1], -1);
seq(round(evalf(a(n),32)), n=0..31); # Peter Luschny, Aug 02 2014
-
matrix[n_Integer /; n >= 1] := Table[Abs[p - q] + 1, {q, n}, {p, n}]; a[n_Integer /; n >= 1] := Abs[Det[matrix[n]]] (* Josh Locker (joshlocker(AT)macfora.com), Apr 29 2004 *)
g[n_,m_,r_] := Binomial[n - 1, r - 1] Binomial[m + 1, r] r; Table[1 + Sum[g[n, k - n, r], {r, 1, k}, {n, 1, k - 1}], {k, 1, 29}] (* Geoffrey Critzer, Jul 02 2009 *)
a[n_] := (n + 2)*2^(n - 1); a[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
LinearRecurrence[{4, -4}, {1, 3}, 40] (* Harvey P. Dale, Aug 29 2011 *)
CoefficientList[Series[(1 - x) / (1 - 2 x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
b[i_]:=i; a[n_]:=Abs[Det[ToeplitzMatrix[Array[b, n], Array[b, n]]]]; Array[a, 40] (* Stefano Spezia, Sep 25 2018 *)
a[n_]:=Hypergeometric2F1[2,-n+1,1,-1];Array[a,32] (* Giorgos Kalogeropoulos, Jan 04 2022 *)
-
A001792(n)=(n+2)<<(n-1) \\ M. F. Hasler, Dec 17 2008
-
for n in range(0,40): print(int((n+2)*2**(n-1)), end=' ') # Stefano Spezia, Oct 16 2018
A046802
T(n, k) = Sum_{j=k..n} binomial(n, j)*E1(j, j-k), where E1 are the Eulerian numbers A173018. Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 33, 15, 1, 1, 31, 131, 131, 31, 1, 1, 63, 473, 883, 473, 63, 1, 1, 127, 1611, 5111, 5111, 1611, 127, 1, 1, 255, 5281, 26799, 44929, 26799, 5281, 255, 1, 1, 511, 16867, 131275, 344551, 344551, 131275, 16867, 511, 1, 1, 1023, 52905
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7
0: 1
1: 1 1
2: 1 3 1
3: 1 7 7 1
4: 1 15 33 15 1
5: 1 31 131 131 31 1
6: 1 63 473 883 473 63 1
7: 1 127 1611 5111 5111 1611 127 1
... Reformatted. - _Wolfdieter Lang_, Feb 14 2015
- L. Comtet, Advanced Combinatorics, Reidel, Holland, 1974, page 245 [From Roger L. Bagula, Nov 21 2009]
- D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, Series reversion with Jacobi and Thron continued fractions, arXiv:2107.14278 [math.NT], 2021.
- Carolina Benedetti, Anastasia Chavez, and Daniel Tamayo, Quotients of uniform positroids, arXiv:1912.06873 [math.CO], 2019.
- V. Buchstaber and T. Panov Toric Topology, arXiv:1210.2368v3 [math.AT], 2014.
- Jan Geuenich, Tilting modules for the Auslander algebra of K[x]/(xn), arXiv:1803.10707 [math.RT], 2018.
- Jun Ma, Shi-mei Ma, and Yeong-Nan Yeh, Recurrence relations for binomial-eulerian polynomials, arXiv:1711.09016 [math.CO], 2017, Thm. 2.1.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
- A. Postnikov, V. Reiner, and L. Williams, Faces of generalized permutohedra, arXiv:math/0609184 [math.CO], 2006-2007.
- D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70. [Annotated scanned copy]
- L. K. Williams, Enumeration of totally positive Grassmann cells, arXiv:math/0307271 [math.CO], 2003-2004.
- L. Williams, The Positive Grassmannian (from a mathematician's perspective), 2014
Cf.
A008292,
A123125,
A248727,
A074909,
A007318,
A000225,
A066810,
A028246,
A001263,
A119879,
A001586,
A019538,
A090582,
A123125,
A130850.
-
T := (n, k) -> add(binomial(n, r)*combinat:-eulerian1(r, r-k), r = k .. n):
for n from 0 to 8 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jun 27 2018
-
t[, 1] = 1; t[n, n_] = 1; t[n_, 2] = 2^(n-1)-1;
t[n_, k_] = Sum[((i-k+1)^i*(k-i)^(n-i-1) - (i-k+2)^i*(k-i-1)^(n-i-1))*Binomial[n-1, i], {i, 0, k-1}];
T[n_, k_] := t[n+1, k+1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten
(* Jean-François Alcover, Jan 22 2015, after Tom Copeland *)
T[ n_, k_] := Coefficient[n! SeriesCoefficient[(1-x) Exp[t] / (1 - x Exp[(1-x) t]), {t, 0, n}] // Simplify, x, k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Michael Somos, Jan 22 2015 *)
A050488
a(n) = 3*(2^n-1) - 2*n.
Original entry on oeis.org
0, 1, 5, 15, 37, 83, 177, 367, 749, 1515, 3049, 6119, 12261, 24547, 49121, 98271, 196573, 393179, 786393, 1572823, 3145685, 6291411, 12582865, 25165775, 50331597, 100663243, 201326537, 402653127, 805306309, 1610612675, 3221225409, 6442450879, 12884901821, 25769803707
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Adam Buck, Jennifer Elder, Azia A. Figueroa, Pamela E. Harris, Kimberly Harry, and Anthony Simpson, Flattened Stirling Permutations, arXiv:2306.13034 [math.CO], 2023. See p. 14.
- Tamas Lengyel, On p-adic properties of the Stirling numbers of the first kind, Journal of Number Theory, 148 (2015) 73-94.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Cf.
A000079,
A000225,
A000295,
A005408,
A008292,
A033484,
A054852,
A060724,
A066810,
A125165,
A126277,
A142963,
A156919,
A156920,
A156925.
-
List([0..30],n->3*(2^n-1)-2*n); # Muniru A Asiru, Oct 26 2018
-
a050488 n = sum $ zipWith (*) a000079_list (reverse $ take n a005408_list)
-- Reinhard Zumkeller, Jul 24 2015
-
[3*(2^n-1) - 2*n: n in [0..30]]; // G. C. Greubel, Oct 23 2018
-
seq(coeff(series(x*(x+1)/((1-x)^2*(1-2*x)),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 26 2018
-
Table[3(2^n-1)-2n,{n,0,30}] (* or *) LinearRecurrence[{4,-5,2}, {0,1,5}, 40] (* Harvey P. Dale, Apr 09 2018 *)
-
a(n)=3*(2^n-1)-2*n \\ Charles R Greathouse IV, Sep 24 2015
-
for n in range(0, 30): print(3*(2**n-1) - 2*n, end=', ') # Stefano Spezia, Oct 27 2018
A238858
Triangle T(n,k) read by rows: T(n,k) is the number of length-n ascent sequences with exactly k descents.
Original entry on oeis.org
1, 1, 0, 2, 0, 0, 4, 1, 0, 0, 8, 7, 0, 0, 0, 16, 33, 4, 0, 0, 0, 32, 131, 53, 1, 0, 0, 0, 64, 473, 429, 48, 0, 0, 0, 0, 128, 1611, 2748, 822, 26, 0, 0, 0, 0, 256, 5281, 15342, 9305, 1048, 8, 0, 0, 0, 0, 512, 16867, 78339, 83590, 21362, 937, 1, 0, 0, 0, 0, 1024, 52905, 376159, 647891, 307660, 35841, 594, 0, 0, 0, 0, 0
Offset: 0
Triangle starts:
00: 1;
01: 1, 0;
02: 2, 0, 0;
03: 4, 1, 0, 0;
04: 8, 7, 0, 0, 0;
05: 16, 33, 4, 0, 0, 0;
06: 32, 131, 53, 1, 0, 0, 0;
07: 64, 473, 429, 48, 0, 0, 0, 0;
08: 128, 1611, 2748, 822, 26, 0, 0, 0, 0;
09: 256, 5281, 15342, 9305, 1048, 8, 0, 0, 0, 0;
10: 512, 16867, 78339, 83590, 21362, 937, 1, 0, 0, 0, 0;
11: 1024, 52905, 376159, 647891, 307660, 35841, 594, 0, 0, 0, 0, 0;
12: 2048, 163835, 1728458, 4537169, 3574869, 834115, 45747, 262, 0, 0, 0, 0, 0;
...
The 53 ascent sequences of length 5 together with their numbers of descents are (dots for zeros):
01: [ . . . . . ] 0 28: [ . 1 1 . 1 ] 1
02: [ . . . . 1 ] 0 29: [ . 1 1 . 2 ] 1
03: [ . . . 1 . ] 1 30: [ . 1 1 1 . ] 1
04: [ . . . 1 1 ] 0 31: [ . 1 1 1 1 ] 0
05: [ . . . 1 2 ] 0 32: [ . 1 1 1 2 ] 0
06: [ . . 1 . . ] 1 33: [ . 1 1 2 . ] 1
07: [ . . 1 . 1 ] 1 34: [ . 1 1 2 1 ] 1
08: [ . . 1 . 2 ] 1 35: [ . 1 1 2 2 ] 0
09: [ . . 1 1 . ] 1 36: [ . 1 1 2 3 ] 0
10: [ . . 1 1 1 ] 0 37: [ . 1 2 . . ] 1
11: [ . . 1 1 2 ] 0 38: [ . 1 2 . 1 ] 1
12: [ . . 1 2 . ] 1 39: [ . 1 2 . 2 ] 1
13: [ . . 1 2 1 ] 1 40: [ . 1 2 . 3 ] 1
14: [ . . 1 2 2 ] 0 41: [ . 1 2 1 . ] 2
15: [ . . 1 2 3 ] 0 42: [ . 1 2 1 1 ] 1
16: [ . 1 . . . ] 1 43: [ . 1 2 1 2 ] 1
17: [ . 1 . . 1 ] 1 44: [ . 1 2 1 3 ] 1
18: [ . 1 . . 2 ] 1 45: [ . 1 2 2 . ] 1
19: [ . 1 . 1 . ] 2 46: [ . 1 2 2 1 ] 1
20: [ . 1 . 1 1 ] 1 47: [ . 1 2 2 2 ] 0
21: [ . 1 . 1 2 ] 1 48: [ . 1 2 2 3 ] 0
22: [ . 1 . 1 3 ] 1 49: [ . 1 2 3 . ] 1
23: [ . 1 . 2 . ] 2 50: [ . 1 2 3 1 ] 1
24: [ . 1 . 2 1 ] 2 51: [ . 1 2 3 2 ] 1
25: [ . 1 . 2 2 ] 1 52: [ . 1 2 3 3 ] 0
26: [ . 1 . 2 3 ] 1 53: [ . 1 2 3 4 ] 0
27: [ . 1 1 . . ] 1
There are 16 ascent sequences with no descent, 33 with one, and 4 with 2, giving row 4 [16, 33, 4, 0, 0, 0].
Cf.
A137251 (ascent sequences with k ascents),
A242153 (ascent sequences with k flat steps).
-
# b(n, i, t): polynomial in x where the coefficient of x^k is #
# the number of postfixes of these sequences of #
# length n having k descents such that the prefix #
# has rightmost element i and exactly t ascents #
b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
`if`(ji, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, -1$2)):
seq(T(n), n=0..12);
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[If[ji, 1, 0]], {j, 0, t+1}]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, -1, -1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)
-
# Transcription of the Maple program
R. = QQ[]
@CachedFunction
def b(n,i,t):
if n==0: return 1
return sum( ( x if ji) ) for j in range(t+2) )
def T(n): return b(n, -1, -1)
for n in range(0,10): print(T(n).list())
A144696
Triangle of 2-Eulerian numbers.
Original entry on oeis.org
1, 1, 2, 1, 7, 4, 1, 18, 33, 8, 1, 41, 171, 131, 16, 1, 88, 718, 1208, 473, 32, 1, 183, 2682, 8422, 7197, 1611, 64, 1, 374, 9327, 49780, 78095, 38454, 5281, 128, 1, 757, 30973, 264409, 689155, 621199, 190783, 16867, 256
Offset: 2
The triangle begins
===========================================
n\k|..0.....1.....2.....3.....4.....5.....6
===========================================
2..|..1
3..|..1.....2
4..|..1.....7.....4
5..|..1....18....33.....8
6..|..1....41...171...131....16
7..|..1....88...718..1208...473....32
8..|..1...183..2682..8422..7197..1611....64
...
Row 4 = [1,7,4]: We represent a permutation p:[n-2] -> [n] in Permute(n,n-2) by its image vector (p(1),...,p(n-2)). Here n = 4. The permutation (1,2) has no excedances; 7 permutations have a single excedance, namely, (1,3), (1,4), (2,1), (3,1), (3,2), (4,1) and (4,2); the remaining 4 permutations, (2,3), (2,4), (3,4) and (4,3) each have two excedances.
- J. Riordan. An introduction to combinatorial analysis. New York, J. Wiley, 1958.
- R. Strosser. Séminaire de théorie combinatoire, I.R.M.A., Université de Strasbourg, 1969-1970.
- Li, Shanlan (1867). Duoji bilei (Series summation by analogies), 4 scrolls. In Zeguxizhai suanxue (Mathematics from the Studio Devoted to the Imitation of the Ancient Chinese Tradition) (Jinling ed.), Volume 4.
- Li, Shanlan (2019). Catégories analogues d’accumulations discrètes (Duoji bilei), traduit et commenté par Andrea Bréard. La Bibliothèque Chinoise. Paris: Les Belles Lettres.
- G. C. Greubel, Rows n = 2..52 of the triangle, flattened
- J. F. Barbero G., J. Salas, and E. J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications, arXiv preprint arXiv:1307.5624 [math.CO], 2013-2015.
- Mark Conger, A refinement of the Eulerian polynomials and the joint distribution of pi(1) and Des(pi) in S_n, arXiv:math/0508112 [math.CO], 2005.
- Ming-Jian Ding and Bao-Xuan Zhu, Some results related to Hurwitz stability of combinatorial polynomials, Advances in Applied Mathematics, Volume 152, (2024), 102591. See p. 9.
- Sergi Elizalde, Descents on quasi-Stirling permutations, arXiv:2002.00985 [math.CO], 2020.
- D. Foata and M. Schutzenberger, Théorie Géométrique des Polynômes Eulériens, Lecture Notes in Math., no.138, Springer Verlag 1970; arXiv:math/0508232 [math.CO], 2005.
- Hsien-Kuei Hwang, Hua-Huai Chern, and Guan-Huei Duh, An asymptotic distribution theory for Eulerian recurrences with applications, arXiv:1807.01412 [math.CO], 2018-2019.
- Tanya Khovanova and Rich Wang, Ending States of a Special Variant of the Chip-Firing Algorithm, arXiv:2302.11067 [math.CO], 2023.
- L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, arXiv:math/0509207 [math.CO], 2005-2006.
- Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104 [math.CO], 2012. - From _N. J. A. Sloane_, Aug 21 2012
- Carla D. Savage and Gopal Viswanathan, The 1/k-Eulerian polynomials, Elec. J. of Comb., Vol. 19, Issue 1, #P9 (2012). - From _N. J. A. Sloane_, Feb 06 2013
Cf.
A000182 (related to alt. row sums).
-
m:=2; [(&+[(-1)^(k-j)*Binomial(n+1,k-j)*Binomial(j+m,m-1)*(j+1)^(n-m+1): j in [0..k]])/m: k in [0..n-m], n in [m..m+10]]; // G. C. Greubel, Jun 04 2022
-
with(combinat):
T:= (n,k) -> 1/2!*add((-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-1)*(j+2), j = 0..k):
for n from 2 to 10 do
seq(T(n,k),k = 0..n-2)
end do;
-
T[n_, k_]:= 1/2!*Sum[(-1)^(k-j)*Binomial[n+1, k-j]*(j+1)^(n-1)*(j+2), {j, 0, k}];
Table[T[n, k], {n,2,10}, {k,0,n-2}]//Flatten (* Jean-François Alcover, Oct 15 2019 *)
-
m=2 # A144696
def T(n,k): return (1/m)*sum( (-1)^(k-j)*binomial(n+1,k-j)*binomial(j+m,m-1)*(j+1)^(n-m+1) for j in (0..k) )
flatten([[T(n,k) for k in (0..n-m)] for n in (m..m+10)]) # G. C. Greubel, Jun 04 2022
A112626
Triangle read by rows: T(n,k) = Sum_{j=0..n} binomial(n, k+j)*2^(n-k-j).
Original entry on oeis.org
1, 3, 1, 9, 5, 1, 27, 19, 7, 1, 81, 65, 33, 9, 1, 243, 211, 131, 51, 11, 1, 729, 665, 473, 233, 73, 13, 1, 2187, 2059, 1611, 939, 379, 99, 15, 1, 6561, 6305, 5281, 3489, 1697, 577, 129, 17, 1, 19683, 19171, 16867, 12259, 6883, 2851, 835, 163, 19, 1, 59049, 58025
Offset: 0
Triangle begins as:
1;
3, 1;
9, 5, 1;
27, 19, 7, 1;
81, 65, 33, 9, 1;
243, 211, 131, 51, 11, 1;
729, 665, 473, 233, 73, 13, 1...
Row sums = n*3^(n-1) + 3^n =
A006234(n+3) (Frank Ruskey and class).
Cf.
A209149 (unsigned matrix inverse).
-
Flat(List([0..10], n-> List([0..n], k-> Sum([k..n], j-> Binomial(n, j)*2^(n-j)) ))); # G. C. Greubel, Nov 18 2019
-
[&+[Binomial(n,j)*2^(n-j): j in [k..n]]: k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
-
seq(seq( add(binomial(n,j)*2^(n-j), j=k..n), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
-
Flatten[Table[Sum[Binomial[n, k+m]*2^(n-k-m), {m, 0, n}], {n, 0, 10}, {k, 0, n}]]
-
T(n,k) = sum(j=k,n, binomial(n,j)*2^(n-j)); \\ G. C. Greubel, Nov 18 2019
-
[[sum(binomial(n,j)*2^(n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
A120434
Triangle read by rows: counts permutations by number of big descents.
Original entry on oeis.org
2, 4, 2, 8, 14, 2, 16, 66, 36, 2, 32, 262, 342, 82, 2, 64, 946, 2416, 1436, 176, 2, 128, 3222, 14394, 16844, 5364, 366, 2, 256, 10562, 76908, 156190, 99560, 18654, 748, 2, 512, 33734, 381566, 1242398, 1378310, 528818, 61946, 1514, 2
Offset: 2
Table begins
n\ k| 0 1 2 3 4 5
----+---------------------------------
2 | 2
3 | 4 2
4 | 8 14 2
5 | 16 66 36 2
6 | 32 262 342 82 2
7 | 64 946 2416 1436 176 2
The permutation (5,1,4,2,3) has big descents at i=1 and i=3. T(3,1)=2 counts (3,1,2) and (2,3,1).
- J. Riordan, An introduction to combinatorial analysis, J. Wiley, 1958.
- J. F. Barbero G., J. Salas and E. J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications, arXiv preprint arXiv:1307.5624 [math.CO], 2013-2015.
- Mark Conger, - A refinement of the Eulerian polynomials and the joint distribution of pi(1) and Des(pi) in S_n, arXiv:math/0508112 [math.CO], 2005.
- D. Foata and M. Schutzenberger, Théorie Géometrique des Polynômes Eulériens, Lecture Notes in Math., no.138, Springer Verlag 1970; arXiv:math/0508232 [math.CO], 2005.
- Tanya Khovanova and Rich Wang, Ending States of a Special Variant of the Chip-Firing Algorithm, arXiv:2302.11067 [math.CO], 2023.
-
U := proc(n,k) option remember: if k < 0 or k > n then 0 elif n = 0 then 1 else (k+2)*U(n-1, k) + (n-k)*U(n-1, k-1) fi end: T_row := n -> seq(U(n-1,k), k = 0..n-2): for n from 2 to 7 do T_row(n) od; # Peter Luschny, Oct 15 2017
-
a[0,0] = 1; a[1,0] = 1; a[n_,k_]/;n<=1 && k>=1 := 0 a[n_,k_]/;k>=n-1>=1 || k<0 := 0 a[n_,k_]/;0<=k<=n-2 := a[n,k] = (k+1)Sum[a[i,k],{i,0,n-1}] + Sum[(i-k)a[i,k-1],{i,n-1}] Table[a[n,k],{n,0,10},{k,0, Max[0,n-2]}]
A086443
Expansion of x^2/((1-4*x)*(1-3*x)^2).
Original entry on oeis.org
0, 0, 1, 10, 67, 376, 1909, 9094, 41479, 183412, 792697, 3367618, 14120011, 58605808, 241331965, 987648382, 4022338063, 16318934764, 66007533313, 266354656186, 1072779614035, 4314363685480, 17330677214341, 69552836627830
Offset: 0
a(4)=67 since the sequences are the 12 permutations of the form 1000, 2000, 3000; the 18 permutations of the form 1100, 2200, 3300; the 36 permutations of the form 1200, 1300, 2300; and 0000. - _Enrique Navarrete_, Apr 15 2022
A110291
Riordan array (1/(1-x), x*(1+2*x)).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 1, 3, 9, 7, 1, 1, 3, 9, 19, 9, 1, 1, 3, 9, 27, 33, 11, 1, 1, 3, 9, 27, 65, 51, 13, 1, 1, 3, 9, 27, 81, 131, 73, 15, 1, 1, 3, 9, 27, 81, 211, 233, 99, 17, 1, 1, 3, 9, 27, 81, 243, 473, 379, 129, 19, 1, 1, 3, 9, 27, 81, 243, 665, 939, 577, 163, 21, 1
Offset: 0
Rows begin
1;
1, 1;
1, 3, 1;
1, 3, 5, 1;
1, 3, 9, 7, 1;
1, 3, 9, 19, 9, 1;
1, 3, 9, 27, 33, 11, 1;
1, 3, 9, 27, 65, 51, 13, 1;
1, 3, 9, 27, 81, 131, 73, 15, 1;
-
R:=PowerSeriesRing(Rationals(), 30);
F:= func< k | Coefficients(R!( x^k*(1+2*x)^k/(1-x) )) >;
A110291:= func< n,k | F(k)[n-k+1] >;
[A110291(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 05 2023
-
F[k_]:= CoefficientList[Series[x^k*(1+2*x)^k/(1-x), {x,0,40}], x];
A110291[n_, k_]:= F[k][[n+1]];
Table[A110291[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 05 2023 *)
-
def p(k,x): return x^k*(1+2*x)^k/(1-x)
def A110291(n,k): return ( p(k,x) ).series(x, 30).list()[n]
flatten([[A110291(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 05 2023
A089249
Triangular array read by rows illustrating the connection between A000522 and A008292.
Original entry on oeis.org
1, 3, 4, 6, 16, 11, 10, 40, 55, 26, 15, 80, 165, 156, 57, 21, 140, 385, 546, 399, 120
Offset: 1
The fifth row of the array is 15 80 165 156 57 resulting from A089249 (1 4 11 26 57 ) times ( 15 20 15 6 1)
Row sums = the third diagonal of
A046802.
Showing 1-10 of 13 results.
Comments