cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A027471 a(n) = (n-1)*3^(n-2), n > 0.

Original entry on oeis.org

0, 1, 6, 27, 108, 405, 1458, 5103, 17496, 59049, 196830, 649539, 2125764, 6908733, 22320522, 71744535, 229582512, 731794257, 2324522934, 7360989291, 23245229340, 73222472421, 230127770466, 721764371007, 2259436291848
Offset: 1

Views

Author

Keywords

Comments

Arithmetic derivative of 3^(n-1): a(n) = A003415(A000244(n-1)). - Reinhard Zumkeller, Feb 26 2002 [Offset corrected by Jianing Song, May 28 2024]
Binomial transform of A053220(n+1) is a(n+2). Binomial transform of A001787 is a(n+1). Binomial transform of A045883(n-1). - Michael Somos, Jul 10 2003
If X_1,X_2,...,X_n are 3-blocks of a (3n+1)-set X then, for n >= 1, a(n+2) is the number of (n+1)-subsets of X intersecting each X_i, (i=1,2,...,n). > - Milan Janjic, Nov 18 2007
Let S be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xSy if x is a subset of y. Then a(n+1) = the sum of the differences in size (i.e., |y|-|x|) for all (x, y) of S. - Ross La Haye, Nov 19 2007
Number of substrings 00 (or 11, or 22) in all ternary words of length n: a(3) = 6 because we have 000, 001, 002, 100, 200 (with 000 contributing two substrings). - Darrell Minor, Jul 17 2025

Crossrefs

Second column of A027465.
Partial sums of A081038.
Cf. A006234.

Programs

  • GAP
    List([1..40], n-> (n-1)*3^(n-2)); # Muniru A Asiru, Jul 15 2018
    
  • Magma
    [(n-1)*3^(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 09 2011
    
  • Maple
    seq((n-1)*3^(n-2), n=1..40); # Muniru A Asiru, Jul 15 2018
  • Mathematica
    Table[(n-1)3^(n-2),{n,30}] (* or *)
    LinearRecurrence[{6,-9},{0,1},30] (* Harvey P. Dale, Apr 14 2016 *)
    Range[0, 24]! CoefficientList[ Series[x*Exp[3 x], {x, 0, 24}], x] (* Robert G. Wilson v, Aug 03 2018 *)
  • PARI
    a(n)=if(n<1, 0, (n-1)*3^(n-2));
    
  • Sage
    [3^(n-2)*(n-1) for n in (1..30)] # G. C. Greubel, May 20 2021

Formula

From Wolfdieter Lang: (Start)
G.f.: (x/(1-3*x))^2.
E.g.f.: (1 + (3*x-1)*exp(3*x))/9.
a(n) = 3^(n-2)*(n-1) (convolution of A000244, powers of 3, with itself). (End)
a(n) = 6*a(n-1) - 9*a(n-2), n > 2, a(1)=0, a(2)=1. - Barry E. Williams, Jan 13 2000
a(n) = A036290(n-1)/3, for n>0. - Paul Barry, Feb 06 2004 [corrected by Jerzy R Borysowicz, Apr 03 2025]
a(n) = Sum_{k=0..n} 3^(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2.
From Paul Barry, Feb 15 2005: (Start)
a(n) = (1/3)*Sum_{k=0..2n} T(n, k)*k, where T(n, k) is given by A027907.
a(n) = (1/3)*Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j+k).
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j-k).
a(n+1) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j+k+1). (End)
Sum_{n>=2} 1/a(n) = 3*log(3/2). - Jaume Oliver Lafont, Sep 19 2009
a(n) = 3*a(n-1) + 3^(n-2) (with a(1)=0). - Vincenzo Librandi, Dec 30 2010
Sum_{n>=2} (-1)^n/a(n) = 3*log(4/3). - Amiram Eldar, Oct 28 2020

Extensions

Edited by Michael Somos, Jul 10 2003

A036290 a(n) = n*3^n.

Original entry on oeis.org

0, 3, 18, 81, 324, 1215, 4374, 15309, 52488, 177147, 590490, 1948617, 6377292, 20726199, 66961566, 215233605, 688747536, 2195382771, 6973568802, 22082967873, 69735688020, 219667417263, 690383311398, 2165293113021, 6778308875544, 21182215236075, 66088511536554, 205891132094649
Offset: 0

Views

Author

Keywords

Comments

If X_1,X_2,...,X_n is a partition of a 3n-set X into 3-blocks then, for n > 0, a(n) is equal to the number of (n+1)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007

Crossrefs

Cf. A000244, A006234, A016578, A027471, A083679, A289399 (partial sums).

Programs

Formula

From Paul Barry, Feb 06 2004: (Start)
A trinomial transform. Differentiate (1+x+x^2)^n and set x=1.
a(n) = Sum_{i=0..n} Sum_{j=0..n} (2*n-2*i-j)*n!/(i!*j!*(n-i-j)!). (End)
From Paul Barry, Feb 15 2005: (Start)
a(n) = Sum_{k=0..2*n} T(n, k)*k, where T(n, k) is given by A027907.
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j+k). (End)
From R. J. Mathar, Jun 19 2011: (Start)
G.f.: 3*x/(3*x-1)^2.
a(n) = 3*A027471(n+1). (End)
Sum_{n>=1} 1/a(n) = log(3/2) = 0.405465108... = A016578. - Franz Vrabec, Jan 07 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = log(4/3) = A083679. - Amiram Eldar, Jul 20 2020
a(n) = 6*a(n-1) - 9*a(n-2). - Wesley Ivan Hurt, Apr 26 2021
From Elmo R. Oliveira, Sep 09 2024: (Start)
E.g.f.: 3*x*exp(3*x).
a(n) = n*A000244(n). (End)

A287768 Irregular triangle read by rows: mean version of Girard-Waring formula A210258, for m = 3 data values.

Original entry on oeis.org

1, 3, -2, 9, -9, 1, 27, -36, 4, 6, 81, -135, 15, 45, -5, 243, -486, 54, 243, -36, -18, 1, 729, -1701, 189, 1134, -189, -189, 7, 21, 2187, -5832, 648, 4860, -864, -1296, 36, 216, 54, -8, 6561, -19683, 2187, 19683, -3645, -7290, 162, 1458, 729, -81, -81, 1, 19683, -65610, 7290, 76545, -14580, -36450, 675, 8100, 6075, -540, -1080, 10, -162, 45
Offset: 1

Views

Author

Gregory Gerard Wojnar, May 31 2017

Keywords

Comments

Let SM_k = Sum( d_(t_1, t_2, t_3)* eM_1^t_1 * eM_2^t_2 * eM_3^t_3) summed over all length 3 integer partitions of k, i.e., 1*t_1+2*t_2+3*t_3=k, where SM_k are the averaged k-th power sum symmetric polynomials in 3 data (i.e., SM_k = S_k/3 where S_k are the k-th power sum symmetric polynomials, and where eM_k are the averaged k-th elementary symmetric polynomials, eM_k = e_k/binomial(3,k) with e_k being the k-th elementary symmetric polynomials. The data d_(t_1, t_2, t_3) form an irregular triangle, with one row for each k value starting with k=1; "irregular" means that the number of terms in successive rows is nondecreasing.
The sum of the positive terms in successive rows appears to be A195350; row sums of negative terms is always 1 less than corresponding sum of positive terms.

Examples

			Triangle begins:
    1;
    3,   -2;
    9,   -9,  1;
   27,  -36,  4,   6;
   81, -135, 15,  45,  -5;
  243, -486, 54, 243, -36, -18, 1;
  ...
The first few rows describe:
Row 1: SM_1 = 1 eM_1;
Row 2: SM_2 = 3*(eM_1)^2 - 2*eM_2;
Row 3: SM_3 = 9*(eM_1)^3 - 9*eM_1*eM_2 + 1*eM_3;
Row 4: SM_4 = 27*(eM_1)^4 - 36*(eM_1)^2*eM_2 + 4*eM_1*eM_3 + 6*(eM_2)^2;
Row 5: SM_5 = 81*(eM_1)^5 - 135*(eM_1)^3*eM_2 + 15*(eM_1)^2*eM_3 + 45*eM_1*(eM_2)^2 - 5*eM_2*eM_3.
		

Crossrefs

Row sums of the positive terms appears to be A195350.
First entries of row n is A000244(n).
Second entries of row n, for n>1, is given by -n*3^(n-2).
Third entries of row n, for n>2, is given by n*3^(n-4), A006234.
Fourth entries of row n, for n>3, is given by n*(n-3)*3^(n-3)/2!.
Fifth entries of row n, for n>4, is given by -n*(n-4)*3^(n-5)/1!.
Corresponding sequences for different sized data multisets are: A028297 (m=2), A288199 (m=4), A288207 (m=5), A288211 (m=6), A288245 (m=7), A288188 (m=8).
Cf. A210258.

Programs

  • Java
    // See Wojnar link.

A136158 Triangle whose rows are generated by A136157^n * [1, 1, 0, 0, 0, ...].

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 9, 15, 7, 1, 27, 54, 36, 10, 1, 81, 189, 162, 66, 13, 1, 243, 648, 675, 360, 105, 16, 1, 729, 2187, 2673, 1755, 675, 153, 19, 1, 2187, 7290, 10206, 7938, 3780, 1134, 210, 22, 1, 6561, 24057, 37908, 34020, 19278, 7182, 1764, 276, 25, 1
Offset: 0

Views

Author

Gary W. Adamson, Dec 16 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [1,2,0,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 17 2007
Equals A080419 when first column is removed (here). - Georg Fischer, Jul 25 2023

Examples

			First few rows of the triangle:
    1;
    1,    1;
    3,    4,    1;
    9,   15,    7,    1;
   27,   54,   36,   10,   1;
   81,  189,  162,   66,  13,   1;
  243,  648,  675,  360, 105,  16,  1;
  729, 2187, 2673, 1755, 675, 153, 19, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A136158:= func< n,k | n eq 0 select 1 else 3^(n-k-1)*(n+2*k)* Binomial(n, k)/n >;
    [A136158(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 22 2023; Dec 27 2023
    
  • Mathematica
    A136158[n_,k_]:= If[n==0, 1, 3^(n-k-1)*(n+2*k)*Binomial[n,k]/n];
    Table[A136158[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2023; Dec 27 2023 *)
  • PARI
    T(n,k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); 3*T(n-1,k) + T(n-1,k-1);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 25 2023
    
  • SageMath
    def A136158(n,k): return 1 if (n==0) else 3^(n-k-1)*((n+2*k)/n)*binomial(n, k)
    flatten([[A136158(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 22 2023; Dec 27 2023

Formula

Sum_{k=0..n} T(n, k) = A081294(n).
Given A136157 = M, an infinite lower triangular bidiagonal matrix with (3, 3, 3, ...) in the main diagonal, (1, 1, 1, ...) in the subdiagonal and the rest zeros; rows of A136157 are generated from M^n * [1, 1, 0, 0, 0, ...], given a(0) = 1.
T(n, k) = A038763(n,n-k). - Philippe Deléham, Dec 17 2007
T(n, k) = 3*T(n-1, k) + T(n-1, k-1) for n > 1, T(0,0) = T(1,1) = T(1,0) = 1. - Philippe Deléham, Oct 30 2013
Sum_{k=0..n} T(n, k)*x^k = (1+x)*(3+x)^(n-1), n >= 1. - Philippe Deléham, Oct 30 2013
G.f.: (1-2*x)/(1-3*x-x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 22 2023: (Start)
T(n, 0) = A133494(n).
T(n, 1) = A006234(n+2).
T(n, 2) = A080420(n-2).
T(n, 3) = A080421(n-3).
T(n, 4) = A080422(n-4).
T(n, 5) = A080423(n-5).
T(n, n) = A000012(n).
T(n, n-1) = A016777(n-1).
T(n, n-2) = A062741(n-1).
Sum_{k=0..n} (-1)^k * T(n, k) = 0^n = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A003688(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A001519(n). (End)
From G. C. Greubel, Dec 27 2023: (Start)
T(n, k) = 3^(n-k-1)*(n+2*k)*binomial(n,k)/n, for n > 0, with T(0, 0) = 1.
T(n, k) = (-1)^k * A164948(n, k). (End)

Extensions

More terms from Philippe Deléham, Dec 17 2007

A038763 Triangular matrix arising in enumeration of catafusenes, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 7, 15, 9, 1, 10, 36, 54, 27, 1, 13, 66, 162, 189, 81, 1, 16, 105, 360, 675, 648, 243, 1, 19, 153, 675, 1755, 2673, 2187, 729, 1, 22, 210, 1134, 3780, 7938, 10206, 7290, 2187, 1, 25, 276, 1764, 7182, 19278, 34020, 37908, 24057, 6561, 1, 28, 351, 2592, 12474, 40824, 91854, 139968, 137781, 78732, 19683
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
Triangle read by rows, n-th row = X^(n-1) * [1, 1, 0, 0, 0, ...] where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (3,3,3,...) in the subdiagonal; given row 0 = 1. - Gary W. Adamson, Jul 19 2008
Fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(2x+1)^n; see A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. - Clark Kimberling, Aug 04 2011

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1,  7,  15,   9;
  1, 10,  36,  54,   27;
  1, 13,  66, 162,  189,   81;
  1, 16, 105, 360,  675,  648,  243;
  1, 19, 153, 675, 1755, 2673, 2187, 729;
		

Crossrefs

Programs

  • Magma
    A038763:= func< n,k | n eq 0 select 1 else 3^(k-1)*(3*n-2*k)*Binomial(n,k)/n >;
    [A038763(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 27 2023
    
  • Mathematica
    A038763[n_,k_]:= If[n==0, 1, 3^(k-1)*(3*n-2*k)*Binomial[n,k]/n];
    Table[A038763[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 27 2023 *)
  • PARI
    T(n,k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); T(n-1,k) + 3*T(n-1,k-1);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ Michel Marcus, Jul 25 2023
    
  • SageMath
    def A038763(n,k): return 1 if (n==0) else 3^(k-1)*(3*n-2*k)*binomial(n,k)/n
    flatten([[A038763(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 27 2023

Formula

T(n, 0)=1; T(1, 1)=1; T(n, k)=0 for k>n; T(n, k) = T(n-1, k-1)*3 + T(n-1, k) for n >= 2.
Sum_{k=0..n} T(n,k) = A081294(n). - Philippe Deléham, Sep 22 2006
T(n, k) = A136158(n, n-k). - Philippe Deléham, Dec 17 2007
G.f.: (1-2*x*y)/(1-(3*y+1)*x). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 27 2023: (Start)
T(n, 0) = A000012(n).
T(n, 1) = A016777(n-1).
T(n, 2) = A062741(n-1).
T(n, 3) = 9*A002411(n-2).
T(n, 4) = 27*A001296(n-3).
T(n, 5) = 81*A051836(n-4).
T(n, n) = A133494(n).
T(n, n-1) = A006234(n+2).
T(n, n-2) = A080420(n-2).
T(n, n-3) = A080421(n-3).
T(n, n-4) = A080422(n-4).
T(n, n-5) = A080423(n-5).
T(2*n, n) = 4*A098399(n-1) + (2/3)*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A006138(n-1) + (2/3)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A110523(n-1) + (4/3)*[n=0]. (End)

Extensions

More terms from Michel Marcus, Jul 25 2023

A064017 Number of ternary trees (A001764) with n nodes and maximal diameter.

Original entry on oeis.org

1, 3, 12, 45, 162, 567, 1944, 6561, 21870, 72171, 236196, 767637, 2480058, 7971615, 25509168, 81310473, 258280326, 817887699, 2582803260, 8135830269, 25569752274, 80196041223, 251048476872, 784526490225, 2447722649502
Offset: 1

Views

Author

Danail Bonchev (bonchevd(AT)aol.com), Sep 07 2001

Keywords

Comments

A problem important for polymer science because it counts the trees having unbranched branches; they are called "combs".
Equals (1, 3, 9, 27, 81, ...) convolved with (1, 0, 3, 9, 27, 81, ...). Example: a(5) = 162 = (81, 27, 9, 3, 1) dot (1, 0, 3, 9, 27) = 81 + 3*27. - Gary W. Adamson, Jul 31 2010
Floretion Algebra Multiplication Program, FAMP Code: lesforseq[ - 'i + 'j - 'kk' - 'ki' - 'kj' ], vesforseq(n) = 3^n, tesforseq = A006234

Examples

			a(5) = 162 because we can write (5+1)*3^(5-2) = 6*3^3 = 6*27.
		

Crossrefs

Programs

  • Maple
    a:=n->ceil(sum(3^(n-2),j=0..n)): seq(a(n), n=1..26); # Zerinvary Lajos, Jun 05 2008
  • Mathematica
    Join[{1},Table[(n+1)3^(n-2),{n,2,30}]] (* or *) Join[{1}, LinearRecurrence[ {6,-9},{3,12},30]] (* Harvey P. Dale, Feb 07 2012 *)
  • PARI
    { for (n=1, 200, if (n>1, a=(n + 1)*p; p*=3, a=p=1); write("b064017.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 06 2009
    
  • PARI
    a(n)=if(n==1, 1, (n+1)*3^(n-2)); \\ Joerg Arndt, May 06 2013
    
  • SageMath
    @CachedFunction
    def BB(n, k, x):  # modified cardinal B-splines
        if n == 1: return 0 if (x < 0) or (x >= k) else 1
        return x*BB(n-1, k, x) + (n*k-x)*BB(n-1, k, x-k)
    def EulerianPolynomial(n, k, x):
        if n == 0: return 1
        return add(BB(n+1, k, k*m+1)*x^m for m in (0..n))
    def A064017(n) : return 3^(n-1)*EulerianPolynomial(1,n-1,1/3) if n != 1 else 1
    [A064017(n) for n in (1..25)]  # Peter Luschny, May 04 2013

Formula

a(n) = 3*a(n-1) + 3^(n-2).
a(n) = (n+1)*3^(n-2), for n > 1.
From Paul Barry, Sep 05 2003: (Start)
a(n) = (n+2)3^(n-1) + 0^n/3 (offset 0).
a(n) = A025192(n) + A027471(n). (End)
A006234(n+4) - a(n+2) = 3^n. - Creighton Dement, Mar 01 2005
a(n+1) = Sum_{k=0..n} A196389(n,k)*3^k. - Philippe Deléham, Oct 31 2011
G.f.: (1 - 3*x + 3*x^2)*x/(1 - 3*x)^2. - Philippe Deléham, Oct 31 2011
a(n) = 6*a(n-1) - 9*a(n-2), with a(1)=1, a(2)=3, a(3)=12. - Harvey P. Dale, Feb 07 2012
E.g.f.: (exp(3*x)*(1 + 3*x) - 1)/9. - Stefano Spezia, Mar 05 2020
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=1} 1/a(n) = 27*log(3/2) - 19/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 17/2 - 27*log(4/3). (End)

A112626 Triangle read by rows: T(n,k) = Sum_{j=0..n} binomial(n, k+j)*2^(n-k-j).

Original entry on oeis.org

1, 3, 1, 9, 5, 1, 27, 19, 7, 1, 81, 65, 33, 9, 1, 243, 211, 131, 51, 11, 1, 729, 665, 473, 233, 73, 13, 1, 2187, 2059, 1611, 939, 379, 99, 15, 1, 6561, 6305, 5281, 3489, 1697, 577, 129, 17, 1, 19683, 19171, 16867, 12259, 6883, 2851, 835, 163, 19, 1, 59049, 58025
Offset: 0

Views

Author

Ross La Haye, Dec 26 2005

Keywords

Comments

T(n, 0) = A000244(n), T(n, 1) = A001047(n), T(n, 2) = A066810(n).
Column 0 is the row sums of A038207 starting at column 0, column 1 is the row sums of A038207 starting at column 1 etc. etc. Helpful suggestions related to Riordan arrays given by Paul Barry.
Riordan array ( 1/(1 - 3*x), x/(1 - 2*x) ). Matrix inverse is a signed version of A209149. - Peter Bala, Jul 17 2013
T(n,k) is the number of strings of length n over an alphabet of 3 letters that contain a given string of length k as a subsequence. - Robert Israel, Jan 14 2020

Examples

			Triangle begins as:
    1;
    3,   1;
    9,   5,   1;
   27,  19,   7,   1;
   81,  65,  33,   9,  1;
  243, 211, 131,  51, 11,  1;
  729, 665, 473, 233, 73, 13, 1...
		

Crossrefs

Row sums = n*3^(n-1) + 3^n = A006234(n+3) (Frank Ruskey and class).
Cf. A209149 (unsigned matrix inverse).

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Sum([k..n], j-> Binomial(n, j)*2^(n-j)) ))); # G. C. Greubel, Nov 18 2019
  • Magma
    [&+[Binomial(n,j)*2^(n-j): j in [k..n]]: k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    seq(seq( add(binomial(n,j)*2^(n-j), j=k..n), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
  • Mathematica
    Flatten[Table[Sum[Binomial[n, k+m]*2^(n-k-m), {m, 0, n}], {n, 0, 10}, {k, 0, n}]]
  • PARI
    T(n,k) = sum(j=k,n, binomial(n,j)*2^(n-j)); \\ G. C. Greubel, Nov 18 2019
    
  • Sage
    [[sum(binomial(n,j)*2^(n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
    

Formula

T(n, k) = Sum_{j=0..n} binomial(n, k+j)*2^(n-k-j).
O.g.f. (by columns): x^k /((1-3*x)*(1-2*x)^k). - Frank Ruskey and class
T(n,k) = Sum_{j=k..n} binomial(n,j)*2^(n-j). - Ross La Haye, May 02 2006
Binomial transform (by columns) of A055248.

Extensions

More terms from Ross La Haye, Dec 31 2006

A079028 a(0) = 1, a(n) = (n + 4)*4^(n-1) for n >= 1.

Original entry on oeis.org

1, 5, 24, 112, 512, 2304, 10240, 45056, 196608, 851968, 3670016, 15728640, 67108864, 285212672, 1207959552, 5100273664, 21474836480, 90194313216, 377957122048, 1580547964928, 6597069766656, 27487790694400, 114349209288704, 474989023199232, 1970324836974592, 8162774324609024
Offset: 0

Views

Author

Benoit Cloitre, Feb 01 2003

Keywords

Comments

a(n) = det(M(n)) where M(n) is the n X n matrix defined by m(i,i) = 5, m(i,j) = i/j.
Main diagonal of array defined by m(1,j) = j; m(i,1) = i and m(i,j) = m(i-1,j) + 3*m(i-1,j-1).
4th binomial transform of (1,1,0,0,0,0,...). - Paul Barry, Mar 07 2003
Number of independent vertex subsets of the graph obtained by attaching two pendant edges to each vertex of the complete graph K_n (see A235113). Example: a(1)=5; indeed, K_1 is the one vertex graph and after attaching two pendant vertices we obtain the path graph ABC; the independent vertex subsets are: empty, {A}, {B}, {C}, and {A,C}. - Emeric Deutsch, Jan 13 2014
Row sums of A235113.

Crossrefs

Programs

Formula

a(n) = 8*a(n-1)-16*a(n-2), a(0) = 1, a(1) = 5. - Paul Barry, Mar 07 2003
G.f.: (1 - 3*x)/(1 - 4*x)^2. - Philippe Deléham, Dec 11 2008
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=0} 1/a(n) = 1024*log(4/3) - 880/3.
Sum_{n>=0} (-1)^n/a(n) = 688/3 - 1024*log(5/4). (End)
E.g.f.: exp(4*x)*(1 + x). - Stefano Spezia, Mar 05 2023

Extensions

More terms from Stefano Spezia, Mar 05 2023

A080419 Triangle of generalized Chebyshev coefficients.

Original entry on oeis.org

1, 4, 1, 15, 7, 1, 54, 36, 10, 1, 189, 162, 66, 13, 1, 648, 675, 360, 105, 16, 1, 2187, 2673, 1755, 675, 153, 19, 1, 7290, 10206, 7938, 3780, 1134, 210, 22, 1, 24057, 37908, 34020, 19278, 7182, 1764, 276, 25, 1, 78732, 137781, 139968, 91854, 40824, 12474, 2592
Offset: 1

Views

Author

Paul Barry, Feb 19 2003

Keywords

Comments

Second binomial transform of 'pruned' Pascal triangle Binomial(i+1,j+1), (i,j>=0).

Examples

			Rows are:
{1},
{4,1},
{15,7,1},
{54,36,10,1},
{189,162,66,13,1},
...
For example, 10 = 7+3*1, 66 = 36+3*10.
		

Crossrefs

Columns include A006234, A080420, A080421, A080422, A080423.

Programs

  • PARI
    T(n, k) = if (k==1, (n+2)*3^(n-2), if (k==n, 1, if (k < n, T(n-1, k-1) + 3*T(n-1, k), 0)));
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 15 2018

Formula

T(n,1) = A006234(n+2), T(n,n) = 1, T(n,k) = T(n-1,k-1) + 3*T(n-1,k), T(n,k)=0 for k>n. - corrected by Michel Marcus, Apr 15 2018
As a square array, T1(n, k)= (n+3k)3^n Product{j=1..(k-1), n+j}/(3k(k-1)!) (k>=1, n>=0).

A328887 Array read by antidiagonals: T(n,m) is the number of acyclic edge sets in the complete bipartite graph K_{n,m}.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 15, 8, 1, 1, 16, 54, 54, 16, 1, 1, 32, 189, 328, 189, 32, 1, 1, 64, 648, 1856, 1856, 648, 64, 1, 1, 128, 2187, 9984, 16145, 9984, 2187, 128, 1, 1, 256, 7290, 51712, 129000, 129000, 51712, 7290, 256, 1, 1, 512, 24057, 260096, 968125, 1475856, 968125, 260096, 24057, 512, 1
Offset: 0

Views

Author

Andrew Howroyd, Oct 29 2019

Keywords

Comments

In other words, the number of spanning forests of the complete bipartite graph K_{n,m} with isolated vertices allowed.

Examples

			Array begins:
====================================================================
n\m | 0   1    2      3       4         5          6           7
----+---------------------------------------------------------------
  0 | 1   1    1      1       1         1          1           1 ...
  1 | 1   2    4      8      16        32         64         128 ...
  2 | 1   4   15     54     189       648       2187        7290 ...
  3 | 1   8   54    328    1856      9984      51712      260096 ...
  4 | 1  16  189   1856   16145    129000     968125     6925000 ...
  5 | 1  32  648   9984  129000   1475856   15450912   151201728 ...
  6 | 1  64 2187  51712  968125  15450912  219682183  2862173104 ...
  7 | 1 128 7290 260096 6925000 151201728 2862173104 48658878080 ...
  ...
		

Crossrefs

Column k=2 is A006234.
Main diagonal is A297077.

Programs

  • PARI
    \\ here U is A328888 as matrix.
    U(n, m=n)={my(M=matrix(n, m), N=matrix(n, m, n, m, n^(m-1) * m^(n-1))); for(n=1, n, for(m=1, m, M[n,m] = N[n,m] + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1, i-1)*binomial(m, j)*N[i,j]*M[n-i, m-j])))); M}
    T(n, m=n)={my(M=U(n, m)); matrix(n+1, m+1, n, m, 1 + sum(i=1, n-1, sum(j=1, m-1, binomial(n-1,i)*binomial(m-1,j)*M[i,j])))}
    { my(A=T(7)); for(i=1, #A, print(A[i,])) }

Formula

T(n,m) = 1 + Sum_{i=1..n} Sum_{j=1..m} binomial(n,i)*binomial(m,j)*A328888(i,j).
Showing 1-10 of 34 results. Next