A112689 A modified Chebyshev transform of the Jacobsthal numbers.
0, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 3, 4, 3, 3, 4, 4, 4, 4, 4, 5, 5, 4, 5, 6, 5, 5, 6, 6, 6, 6, 6, 7, 7, 6, 7, 8, 7, 7, 8, 8, 8, 8, 8, 9, 9, 8, 9, 10, 9, 9, 10, 10, 10, 10, 10, 11, 11, 10, 11, 12, 11, 11, 12, 12, 12, 12, 12, 13, 13, 12, 13, 14, 13, 13, 14, 14, 14, 14, 14, 15, 15, 14
Offset: 0
Examples
G.f. = x + x^2 + x^4 + 2*x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,-1,2,-1,1,-1)
Crossrefs
Cf. A051275.
Programs
-
Magma
I:=[0, 1, 1, 0, 1, 2]; [n le 6 select I[n] else Self(n-1)-Self(n-2)+2*Self(n-3)-Self(n-4)+Self(n-5)-Self(n-6): n in [1..100]]; // Vincenzo Librandi, Aug 14 2013
-
Mathematica
CoefficientList[Series[x / ((1 + x^2) (1 + x + x^2) (1 - x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 14 2013 *) a[ n_] := If[n > 0, SeriesCoefficient[ x / (1 - x + x^2 - 2 x^3 + x^4 - x^5 + x^6), {x, 0, n}], SeriesCoefficient[ -x^5 / (1 - x + x^2 - 2 x^3 + x^4 - x^5 + x^6), {x, 0, -n}]] (* Michael Somos, Dec 17 2013 *) LinearRecurrence[{1,-1,2,-1,1,-1},{0,1,1,0,1,2},100] (* Harvey P. Dale, Apr 18 2022 *)
-
PARI
a(n) = floor((n+4)/6+(1-(-1)^n)*(-1)^floor(n/2)/4); \\ Joerg Arndt, Aug 14 2013
-
PARI
{a(n) = if( n>0, polcoeff( x / (1 - x + x^2 - 2*x^3 + x^4 - x^5 + x^6) + x * O(x^n), n), polcoeff( -x^5 / (1 - x + x^2 - 2*x^3 + x^4 - x^5 + x^6) + x * O(x^-n), -n))} /* Michael Somos, Dec 11 2013 */
Formula
G.f.: x/((1+x^2)*(1+x+x^2)*(1-x)^2).
a(n) = sum{k=0..floor((n+2)/2), (-1)^(k+1)*C(n-k+2, k-1)*A001045(n-2k+2)}.
a(n) = floor((n+4)/6+(1-(-1)^n)*(-1)^floor(n/2)/4). - Tani Akinari, Aug 13 2013
G.f.: x / (1 - x + x^2 - 2*x^3 + x^4 - x^5 + x^6). - Michael Somos, Dec 11 2013
a(-4 - n) = -a(n). a(2*n) = floor( (n+2) / 3). a(2*n + 1) = A051275(n). a(6*n) = a(6*n - 2) = a(6*n - 4) = n. a(6*n + 1) - 1 = a(6*n - 3) = a(6*n - 7) = 2 * floor(n/2). - Michael Somos, Dec 11 2013
0 = a(n) - a(n-1) + a(n-2) - 2*a(n-3) + a(n-4) - a(n-5) + a(n-6) for all n in Z. - Michael Somos, Dec 11 2013
Euler transform of length 4 sequence [ 1, -1, 1, 1]. - Michael Somos, Dec 17 2013