cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112689 A modified Chebyshev transform of the Jacobsthal numbers.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 3, 4, 3, 3, 4, 4, 4, 4, 4, 5, 5, 4, 5, 6, 5, 5, 6, 6, 6, 6, 6, 7, 7, 6, 7, 8, 7, 7, 8, 8, 8, 8, 8, 9, 9, 8, 9, 10, 9, 9, 10, 10, 10, 10, 10, 11, 11, 10, 11, 12, 11, 11, 12, 12, 12, 12, 12, 13, 13, 12, 13, 14, 13, 13, 14, 14, 14, 14, 14, 15, 15, 14
Offset: 0

Views

Author

Paul Barry, Sep 15 2005

Keywords

Examples

			G.f. = x + x^2 + x^4 + 2*x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + ...
		

Crossrefs

Cf. A051275.

Programs

  • Magma
    I:=[0, 1, 1, 0, 1, 2]; [n le 6 select I[n] else Self(n-1)-Self(n-2)+2*Self(n-3)-Self(n-4)+Self(n-5)-Self(n-6): n in [1..100]]; // Vincenzo Librandi, Aug 14 2013
    
  • Mathematica
    CoefficientList[Series[x / ((1 + x^2) (1 + x + x^2) (1 - x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 14 2013 *)
    a[ n_] := If[n > 0, SeriesCoefficient[ x / (1 - x + x^2 - 2 x^3 + x^4 - x^5 + x^6), {x, 0, n}], SeriesCoefficient[ -x^5 / (1 - x + x^2 - 2 x^3 + x^4 - x^5 + x^6), {x, 0, -n}]] (* Michael Somos, Dec 17 2013 *)
    LinearRecurrence[{1,-1,2,-1,1,-1},{0,1,1,0,1,2},100] (* Harvey P. Dale, Apr 18 2022 *)
  • PARI
    a(n) = floor((n+4)/6+(1-(-1)^n)*(-1)^floor(n/2)/4); \\ Joerg Arndt, Aug 14 2013
    
  • PARI
    {a(n) = if( n>0, polcoeff( x / (1 - x + x^2 - 2*x^3 + x^4 - x^5 + x^6) + x * O(x^n), n), polcoeff( -x^5 / (1 - x + x^2 - 2*x^3 + x^4 - x^5 + x^6) + x * O(x^-n), -n))} /* Michael Somos, Dec 11 2013 */

Formula

G.f.: x/((1+x^2)*(1+x+x^2)*(1-x)^2).
a(n) = sum{k=0..floor((n+2)/2), (-1)^(k+1)*C(n-k+2, k-1)*A001045(n-2k+2)}.
a(n) = floor((n+4)/6+(1-(-1)^n)*(-1)^floor(n/2)/4). - Tani Akinari, Aug 13 2013
G.f.: x / (1 - x + x^2 - 2*x^3 + x^4 - x^5 + x^6). - Michael Somos, Dec 11 2013
a(-4 - n) = -a(n). a(2*n) = floor( (n+2) / 3). a(2*n + 1) = A051275(n). a(6*n) = a(6*n - 2) = a(6*n - 4) = n. a(6*n + 1) - 1 = a(6*n - 3) = a(6*n - 7) = 2 * floor(n/2). - Michael Somos, Dec 11 2013
0 = a(n) - a(n-1) + a(n-2) - 2*a(n-3) + a(n-4) - a(n-5) + a(n-6) for all n in Z. - Michael Somos, Dec 11 2013
Euler transform of length 4 sequence [ 1, -1, 1, 1]. - Michael Somos, Dec 17 2013