cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112731 Primes such that the sum of the predecessor and successor primes is divisible by 7.

Original entry on oeis.org

3, 13, 61, 71, 83, 167, 197, 241, 271, 281, 283, 317, 347, 349, 379, 431, 457, 499, 503, 569, 617, 631, 641, 643, 701, 757, 761, 797, 827, 829, 863, 1061, 1151, 1163, 1217, 1321, 1381, 1471, 1481, 1483, 1531, 1543, 1553, 1609, 1619, 1667, 1669, 1777, 1877
Offset: 1

Views

Author

Jonathan Vos Post, Dec 31 2005

Keywords

Examples

			a(1) = 3 because previousprime(3) + nextprime(3) = 2 + 5 = 7.
a(2) = 13 because previousprime(13) + nextprime(13) = 11 + 17 = 28 = 7 * 4.
a(3) = 61 because previousprime(61) + nextprime(61) = 59 + 67 = 126 = 7 * 18.
a(4) = 71 because previousprime(71) + nextprime(71) = 67 + 73 = 140 = 7 * 20.
		

Crossrefs

Programs

  • Mathematica
    For[n = 2, n < 300, n++, If[(Prime[n - 1] + Prime[n + 1])/7 == Floor[(Prime[n - 1] + Prime[n + 1])/7], Print[Prime[n]]]] (* Stefan Steinerberger *)
    Prime@Select[Range[2, 298], Mod[Prime[ # - 1] + Prime[ # + 1], 7] == 0 &] (* Robert G. Wilson v, Jan 11 2006 *)
    Transpose[Select[Partition[Prime[Range[7000]],3,1],Divisible[First[#]+ Last[#],7]&]][[2]] (* Harvey P. Dale, Jun 11 2013 *)

Extensions

More terms from Stefan Steinerberger and Robert G. Wilson v, Jan 02 2006