A112731 Primes such that the sum of the predecessor and successor primes is divisible by 7.
3, 13, 61, 71, 83, 167, 197, 241, 271, 281, 283, 317, 347, 349, 379, 431, 457, 499, 503, 569, 617, 631, 641, 643, 701, 757, 761, 797, 827, 829, 863, 1061, 1151, 1163, 1217, 1321, 1381, 1471, 1481, 1483, 1531, 1543, 1553, 1609, 1619, 1667, 1669, 1777, 1877
Offset: 1
Examples
a(1) = 3 because previousprime(3) + nextprime(3) = 2 + 5 = 7. a(2) = 13 because previousprime(13) + nextprime(13) = 11 + 17 = 28 = 7 * 4. a(3) = 61 because previousprime(61) + nextprime(61) = 59 + 67 = 126 = 7 * 18. a(4) = 71 because previousprime(71) + nextprime(71) = 67 + 73 = 140 = 7 * 20.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
For[n = 2, n < 300, n++, If[(Prime[n - 1] + Prime[n + 1])/7 == Floor[(Prime[n - 1] + Prime[n + 1])/7], Print[Prime[n]]]] (* Stefan Steinerberger *) Prime@Select[Range[2, 298], Mod[Prime[ # - 1] + Prime[ # + 1], 7] == 0 &] (* Robert G. Wilson v, Jan 11 2006 *) Transpose[Select[Partition[Prime[Range[7000]],3,1],Divisible[First[#]+ Last[#],7]&]][[2]] (* Harvey P. Dale, Jun 11 2013 *)
Extensions
More terms from Stefan Steinerberger and Robert G. Wilson v, Jan 02 2006