cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112886 Positive integers that have no triangular divisors > 1.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 25, 26, 29, 31, 32, 34, 35, 37, 38, 41, 43, 44, 46, 47, 49, 52, 53, 58, 59, 61, 62, 64, 65, 67, 68, 71, 73, 74, 76, 77, 79, 82, 83, 85, 86, 88, 89, 92, 94, 95, 97, 98, 101, 103, 104, 106, 107, 109, 113, 115, 116, 118, 119
Offset: 1

Views

Author

Leroy Quet, Jan 10 2006

Keywords

Comments

Sequence consists of those positive integers not in A113502.
(Pi^(3/2))/density is empirically close to 10. - Richard Peterson, Apr 06 2025

Examples

			14 is included because the divisors of 14 are 1, 2, 7 and 14, none of which are triangular numbers > 1.
		

Crossrefs

Programs

  • Mathematica
    v={};Do[If[b=Select[Divisors[n], #>1 && IntegerQ[(1+8#)^(1/2)]&]; b=={}, AppendTo[v, n]], {n, 138}]; v (Firoozbakht)
    tfpnQ[n_]:=Module[{nn=120,trnos},trnos=Rest[Accumulate[ Range[ (Sqrt[8nn+1]-1)/2+1]]]; Intersection[ Divisors[ n],trnos]=={}]; Select[Range[ 120], tfpnQ] (* Harvey P. Dale, Jul 17 2015 *)
  • PARI
    is(n)=fordiv(n, d, if(ispolygonal(d, 3) && d>1, return(0))); 1 \\ Charles R Greathouse IV, Jul 31 2016
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A112886_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(d==1 or not is_square((d<<3)+1) for d in divisors(n,generator=True)), count(max(startvalue,1)))
    A112886_list = list(islice(A112886_gen(),40)) # Chai Wah Wu, Jun 07 2025

Formula

a(n) = A132895(n)/2. - Ray Chandler, May 29 2008

Extensions

More terms from Farideh Firoozbakht, Jan 12 2006
Name edited (based on a suggestion from Michel Marcus) by Jon E. Schoenfield, Jul 02 2021