cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A112957 a(1) = a(2) = a(3) = 1; for n > 1, a(n+3) = a(n)^2 + a(n+1)^2 + a(n+2)^2.

Original entry on oeis.org

1, 1, 1, 3, 11, 131, 17291, 298995963, 89398586189293211, 7992107212644486930829797919966571, 63873777698404030240264509605345282496735163325301838600463378485931
Offset: 1

Views

Author

Jonathan Vos Post, Jan 02 2006; definition corrected Jan 02 2006

Keywords

Comments

A quadratic tribonacci sequence.
This is to A000283 as a tribonacci (A000213) is to Fibonacci. Two oddities about this sequence: (a) its first 7 terms are identical to terms numbered 2 through 8 of A072878; (b) only one of the first 9 terms are composite. Primes in the sequence begin 3, 11, 131, 17291 and 89398586189293211. What is the next prime?

Crossrefs

Programs

A112958 a(1) = a(2) = a(3) = a(4) = 1; for n>1: a(n+4) = a(n)^2 + a(n+1)^2 + a(n+2)^2 + a(n+3)^2.

Original entry on oeis.org

1, 1, 1, 1, 4, 19, 379, 144019, 20741616379, 430214650034342688004, 185084645104171955001009752069374428191659
Offset: 1

Views

Author

Jonathan Vos Post, Jan 02 2006

Keywords

Comments

A quadratic tetranacci sequence.
This is to A000283 as a tetranacci (A000288) is to Fibonacci. Primes in this begin 19, 379.

Examples

			1^2 + 4^2 + 19^2 + 379^2 = 144019.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1] == a[2] == a[3] == a[4] == 1, a[n] == a[n-1]^2 + a[n-2]^2 + a[n-3]^2 + a[n-4]^2}, a, {n, 15}] (* Vincenzo Librandi, Aug 21 2016 *)

A112959 a(1) = a(2) = a(3) = a(4) = a(5) = 1; for n>1: a(n+5) = (a(n))^2 + (a(n+1))^2 + (a(n+2))^2 + (a(n+3))^2 + (a(n+4))^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 29, 869, 756029, 571580604869, 326704387862983487112029, 106735757048926752040856495274871386126283608845
Offset: 1

Views

Author

Jonathan Vos Post, Jan 02 2006

Keywords

Comments

A quadratic pentanacci sequence.
This is to A000283 as a pentanacci (A000322) is to Fibonacci. Primes in this begin a(6) = 5 and a(7) = 29. a(8), a(9), a(10) and a(11) are semiprime.

Examples

			5^2 + 29^2 + 869^2 + 756029^2 + 571580604869^2 = 326704387862983487112029.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1] == a[2] == a[3] == a[4] == a[5] == 1, a[n] == a[n-1]^2 + a[n-2]^2 + a[n-3]^2 + a[n-4]^2 + a[n-5]^2}, a, {n, 16}] (* Vincenzo Librandi, Aug 21 2016 *)

A113848 a(1) = a(2) = 1, a(n+2) = 2*a(n) + a(n+1)^2.

Original entry on oeis.org

1, 1, 3, 11, 127, 16151, 260855055, 68045359719085327, 4630170979299719971778494028407039, 21438483297549327871400796194793048411084076762817293736211302918175
Offset: 1

Views

Author

Jonathan Vos Post, Jan 24 2006

Keywords

Comments

In this sequence the primes begin a(3) = 3, a(4) = 11, a(5) = 127, a(9) = 4630170979299719971778494028407039.

Examples

			a(1) = 1 by definition.
a(2) = 1 by definition.
a(3) = 2*1 + 1^2 = 3.
a(4) = 2*1 + 3^2 = 11.
a(5) = 2*3 + 11^2 = 127.
a(6) = 2*11 + 127^2 = 16151.
		

Crossrefs

Programs

Formula

a(1) = a(2) = 1, for n>2: a(n) = 2*a(n-2) + a(n-1)^2. a(1) = a(2) = 1, for n>0: a(n+2) = 2*a(n) + a(n+1)^2.
a(n) ~ c^(2^n), where c = 1.163464453662702696843453679269882816346479873363677551158525103156732040997... . - Vaclav Kotesovec, Dec 18 2014

A113592 Array of quadratic pseudofibonacci sequences, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 11, 1, 4, 11, 40, 127, 1, 5, 18, 127, 1612, 16151, 1, 6, 27, 332, 16151, 2598264, 260855055, 1, 7, 38, 739, 110260
Offset: 1

Views

Author

Jonathan Vos Post, Jan 26 2006

Keywords

Comments

Row 1 is A113848. Column 1 is A000012 (the simplest sequence of positive numbers: the all 1's sequence). Column 2 is A000027 (the natural numbers) = n. Column 3 is A010000 = A059100(n+1) = n^2 + 2. Column 4 is 2*n + (n^2 + 2)^2 = n^4 + 4*n^2 + 2*n + 4. Column 5 is 2*(n^2 + 2) + (n^4 + 4*n^2 + 2*n + 4)^2 = n^8 + 8*n^6 + 4*n^5 + 24*n^4 + 16*n^3 + 38*n^2 + 16*n + 20.

Examples

			Table (upper left corner):
1...1...3...11...127....16151...260855055...
1...2...6...40...1612...2598624.675284696600...
1...3...11..127..16151..260855055...
1...4...18..332..110260.12157268264...
1...5...27..739..546175...
1...6...38..1456.2120012...
1...7...51..2615.6838327...
1...8...66..4372.19114516...
1...9...83..6907.47706815
1..10..102..10424.108659980...
		

Crossrefs

Formula

Antidiagonals of table: T(i, j) = j-th iteration of a(i, 0) = 1, a(i, 1) = i and for j>1: a(i, j) = 2*a(i, j-2) + a(i, j-1)^2.
Showing 1-5 of 5 results.