A112957
a(1) = a(2) = a(3) = 1; for n > 1, a(n+3) = a(n)^2 + a(n+1)^2 + a(n+2)^2.
Original entry on oeis.org
1, 1, 1, 3, 11, 131, 17291, 298995963, 89398586189293211, 7992107212644486930829797919966571, 63873777698404030240264509605345282496735163325301838600463378485931
Offset: 1
A112958
a(1) = a(2) = a(3) = a(4) = 1; for n>1: a(n+4) = a(n)^2 + a(n+1)^2 + a(n+2)^2 + a(n+3)^2.
Original entry on oeis.org
1, 1, 1, 1, 4, 19, 379, 144019, 20741616379, 430214650034342688004, 185084645104171955001009752069374428191659
Offset: 1
1^2 + 4^2 + 19^2 + 379^2 = 144019.
-
RecurrenceTable[{a[1] == a[2] == a[3] == a[4] == 1, a[n] == a[n-1]^2 + a[n-2]^2 + a[n-3]^2 + a[n-4]^2}, a, {n, 15}] (* Vincenzo Librandi, Aug 21 2016 *)
A112960
a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1; for n>1: a(n+6) = (a(n))^2 + (a(n+1))^2 + (a(n+2))^2 + (a(n+3))^2 + (a(n+4))^2 + (a(n+5))^2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 6, 41, 1721, 2963561, 8782696764281, 77135762453320729974211241, 5949925849255124079413733148488788342637650064971321
Offset: 1
1^2 + 6^2 + 41^2 + 1721^2 + 2963561^2 + 8782696764281^2 = 77135762453320729974211241.
-
RecurrenceTable[{a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == 1, a[n] == a[n-1]^2 + a[n-2]^2 + a[n-3]^2 + a[n-4]^2 + a[n-5]^2 + a[n-6]^2}, a, {n, 17}] (* Vincenzo Librandi, Aug 21 2016 *)
nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,a^2+b^2+c^2+d^2+e^2+f^2}; NestList[ nxt,{1,1,1,1,1,1},12][[All,1]] (* Harvey P. Dale, Apr 12 2020 *)
A113848
a(1) = a(2) = 1, a(n+2) = 2*a(n) + a(n+1)^2.
Original entry on oeis.org
1, 1, 3, 11, 127, 16151, 260855055, 68045359719085327, 4630170979299719971778494028407039, 21438483297549327871400796194793048411084076762817293736211302918175
Offset: 1
a(1) = 1 by definition.
a(2) = 1 by definition.
a(3) = 2*1 + 1^2 = 3.
a(4) = 2*1 + 3^2 = 11.
a(5) = 2*3 + 11^2 = 127.
a(6) = 2*11 + 127^2 = 16151.
Cf.
A000278,
A000283,
A014253,
A063827,
A072878,
A112957,
A112958,
A112959,
A112960,
A112961,
A112969,
A113785.
-
Join[{a=1,b=1},Table[c=1*b^2+2*a;a=b;b=c,{n,10}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
RecurrenceTable[{a[1]==1, a[2]==1, a[n] == 2*a[n-2] + a[n-1]^2}, a, {n, 1, 10}] (* Vaclav Kotesovec, Dec 18 2014 *)
A113592
Array of quadratic pseudofibonacci sequences, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 6, 11, 1, 4, 11, 40, 127, 1, 5, 18, 127, 1612, 16151, 1, 6, 27, 332, 16151, 2598264, 260855055, 1, 7, 38, 739, 110260
Offset: 1
Table (upper left corner):
1...1...3...11...127....16151...260855055...
1...2...6...40...1612...2598624.675284696600...
1...3...11..127..16151..260855055...
1...4...18..332..110260.12157268264...
1...5...27..739..546175...
1...6...38..1456.2120012...
1...7...51..2615.6838327...
1...8...66..4372.19114516...
1...9...83..6907.47706815
1..10..102..10424.108659980...
Cf.
A000012,
A000027,
A000278,
A000283,
A010000,
A014253,
A059100,
A063827,
A072878,
A112957,
A112958,
A112959,
A112960,
A112961,
A112969,
A113785.
Showing 1-5 of 5 results.
Comments