cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113025 Triangle of integer coefficients of polynomials P(n,x) of degree n, and falling powers of x, arising in diagonal Padé approximation of exp(x).

Original entry on oeis.org

1, 1, 2, 1, 6, 12, 1, 12, 60, 120, 1, 20, 180, 840, 1680, 1, 30, 420, 3360, 15120, 30240, 1, 42, 840, 10080, 75600, 332640, 665280, 1, 56, 1512, 25200, 277200, 1995840, 8648640, 17297280, 1, 72, 2520, 55440, 831600, 8648640, 60540480, 259459200
Offset: 0

Views

Author

Benoit Cloitre, Jan 03 2006

Keywords

Comments

exp(x) is well approximated by P(n,x)/P(n,-x). (P(n,1)/P(n,-1))_{n>=0} is a sequence of convergents to e: i.e., P(n,1) = A001517(n) and P(n,-1) = abs(A002119(n)).
From Roger L. Bagula, Feb 15 2009: (Start)
The row polynomials in rising powers of x are y_n(2*x) = Sum_{k=0..n} binomial(n+k, 2*k)*((2*k)!/k!)*x^k, for n >= 0, with the Bessel polynomials y_n(x) of Krall and Frink, eq. (3), (see also Grosswald, p. 18, eq. (7) and Riordan, p. 77). For the coefficients see A001498. [Edited by Wolfdieter Lang, May 11 2018]
P(n, x) = Sum_{k=0..n} (n+k)!/(k!*(n-k)!)*x^(n-k).
Row sums are A001517. (End)

Examples

			P(3,x) = x^3 + 12*x^2 + 60*x + 120.
y_3(2*x) = 1 + 12*x + 60*x^2 + 120*x^3. (Bessel with x -> 2*x).
From _Roger L. Bagula_, Feb 15 2009: (Start)
{1},
{1, 2},
{1, 6, 12},
{1, 12, 60, 120},
{1, 20, 180, 840, 1680},
{1, 30, 420, 3360, 15120, 30240},
{1, 42, 840, 10080, 75600, 332640, 665280},
{1, 56, 1512, 25200, 277200, 1995840, 8648640, 17297280},
{1, 72, 2520, 55440, 831600, 8648640, 60540480, 259459200, 518918400},
{1, 90, 3960, 110880, 2162160, 30270240, 302702400, 2075673600, 8821612800, 17643225600},
{1, 110, 5940, 205920, 5045040, 90810720, 1210809600, 11762150400, 79394515200, 335221286400, 670442572800} (End)
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p.77, 10. [From Roger L. Bagula, Feb 15 2009]

Crossrefs

Cf. A001498, A001517, A303986 (signed version).

Programs

  • Maple
    T := (n, k) -> pochhammer(n+1, k)*binomial(n, k):
    seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, May 11 2018
  • Mathematica
    L[n_, m_] = (n + m)!/((n - m)!*m!);
    Table[Table[L[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%] (* Roger L. Bagula, Feb 15 2009 *)
    P[x_, n_] := Sum[ (2*n - k)!/(k!*(n - k)!)*x^(k), {k, 0, n}]; Table[Reverse[CoefficientList[P[x, n], x]], {n,0,10}] // Flatten (* G. C. Greubel, Aug 15 2017 *)
  • PARI
    T(n,k)=(n+k)!/k!/(n-k)!

Formula

From Wolfdieter Lang, May 11 2018: (Start)
T(n, k) = binomial(n+k, 2*k)*(2*k)!/k! = (n+k)!/((n-k)!*k!), n >= 0, k = 0..n. (see the R. L. Baluga comment above).
Recurrence (adapted from A001498, see the Grosswald reference): For n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = 2*(2*n-1)*a(n-1, k-1) + a(n-2, k).
(End)
T(n, k) = Pochhammer(n+1, k)*binomial(n, k). # Peter Luschny, May 11 2018