cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113032 a(n) = Sum_{k=0..floor(n/8)} binomial(n-5*k, 3*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 57, 85, 121, 167, 228, 315, 449, 666, 1023, 1605, 2533, 3974, 6156, 9394, 14137, 21051, 31159, 46066, 68305, 101850, 152857, 230720, 349576, 530476, 804579, 1217951, 1838897, 2769267, 4161918, 6247570, 9375799
Offset: 0

Views

Author

Alexey Kistanov (plast(AT)solid.ru), Jan 05 2006

Keywords

Examples

			a(10+1)=11 because C(10,0) + C(5,3) = 1+10 = 11.
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n-5*k, 3*k): k in [0..Floor(n/8)]]): n in [0..50]]; // G. C. Greubel, Apr 09 2018
    
  • Mathematica
    Table[Sum[Binomial[n - 5*k, 3*k], {k, 0, Floor[n/8]}], {n, 0, 50}] (* G. C. Greubel, Apr 09 2018 *)
  • PARI
    a(n) = sum(k=0, n\8, binomial(n-5*k, 3*k)); \\ Michel Marcus, Sep 05 2013
    
  • PARI
    lista(nn) = {my(x = xx + O(xx^nn)); gf = (1-x)^2/(1-3*x+3*x^2-x^3-x^8); for (i=0, nn-1, print1(polcoeff(gf, i, xx), ", "));} \\ Michel Marcus, Sep 05 2013
    
  • Sage
    ((1-x)^2/(1-3*x+3*x^2-x^3-x^8)).series(x, 44).coefficients(x, sparse=False) # Stefano Spezia, Aug 19 2023

Formula

G.f.: (1-x)^2/(1-3*x+3*x^2-x^3-x^8). [corrected by Georg Fischer, Apr 17 2020]

Extensions

Corrected by T. D. Noe, Nov 01 2006
More terms from Michel Marcus, Sep 05 2013