cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113059 a(n) = n! * Sum_{k=0..n} A000296(k)/k!.

Original entry on oeis.org

1, 1, 3, 10, 44, 231, 1427, 10151, 81923, 740732, 7425042, 81773715, 981864897, 12767876941, 178774288331, 2681781213130, 42909715480460, 729474427239587, 13130613291110603, 249482261007109579, 4989650444408388515, 104782705832468197252, 2305219956684224457858
Offset: 0

Views

Author

Karol A. Penson, Oct 12 2005

Keywords

Comments

Number of set partitions of [n] where the k-th singletons are k-colored and all other blocks are unicolored. - Alois P. Heinz, Apr 29 2025

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(x)-1-x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 23 2018
  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*b(n-1, k+1)+
          add(b(n-j, k)*binomial(n-1, j-1), j=2..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 29 2025
    # second Maple program:
    b:= proc(n, k, m) option remember; `if`(n=0, k!, `if`(k>0,
          b(n-1, k-1, m+1)*k, 0)+m*b(n-1, k, m)+b(n-1, k+1, m))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 29 2025
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Exp[Exp[x] - 1 - x]/(1 - x), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, May 23 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace( exp(exp(x)-1-x)/(1-x))) \\ G. C. Greubel, May 23 2018
    

Formula

a(n) = (-1)^n*n!*Sum_{k >=0} LaguerreL(n, -n-1, k-1)/k!/exp(1), n>=0.
E.g.f.: exp(exp(x)-1-x)/(1-x).
a(n) ~ exp(exp(1)-2) * n!. - Vaclav Kotesovec, Jun 26 2022