A113059 a(n) = n! * Sum_{k=0..n} A000296(k)/k!.
1, 1, 3, 10, 44, 231, 1427, 10151, 81923, 740732, 7425042, 81773715, 981864897, 12767876941, 178774288331, 2681781213130, 42909715480460, 729474427239587, 13130613291110603, 249482261007109579, 4989650444408388515, 104782705832468197252, 2305219956684224457858
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..448
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(x)-1-x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 23 2018 -
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, k*b(n-1, k+1)+ add(b(n-j, k)*binomial(n-1, j-1), j=2..n)) end: a:= n-> b(n, 1): seq(a(n), n=0..22); # Alois P. Heinz, Apr 29 2025 # second Maple program: b:= proc(n, k, m) option remember; `if`(n=0, k!, `if`(k>0, b(n-1, k-1, m+1)*k, 0)+m*b(n-1, k, m)+b(n-1, k+1, m)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..22); # Alois P. Heinz, Apr 29 2025
-
Mathematica
With[{nmax = 50}, CoefficientList[Series[Exp[Exp[x] - 1 - x]/(1 - x), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, May 23 2018 *)
-
PARI
x='x+O('x^30); Vec(serlaplace( exp(exp(x)-1-x)/(1-x))) \\ G. C. Greubel, May 23 2018
Formula
a(n) = (-1)^n*n!*Sum_{k >=0} LaguerreL(n, -n-1, k-1)/k!/exp(1), n>=0.
E.g.f.: exp(exp(x)-1-x)/(1-x).
a(n) ~ exp(exp(1)-2) * n!. - Vaclav Kotesovec, Jun 26 2022
Comments