cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A376544 a(n) is the number of singleton commuting ordered set partitions.

Original entry on oeis.org

1, 1, 2, 8, 40, 242, 1784, 15374, 151008, 1669010, 20503768, 277049126, 4083693200, 65211041690, 1121435565384, 20662801363790, 406100030507200, 8480197575505442, 187500501495191480, 4376026842424336886, 107506303414618515696, 2773174380946415844266
Offset: 0

Views

Author

Raul Penaguiao, Sep 27 2024

Keywords

Comments

a(n) is also the dimension of the span of chromatic quasi-symmetric invariants of generalized permutahedra.

Examples

			a(2) = 2 because the ordered set partitions 1|2 and 2|1 are counted only once.
a(3) = 8, all ordered set partitions with length 3 (e.g. 1|2|3) are counted only once.
a(4) = 40 counts 1|34|2 separately to 2|34|1, but treats 1|2|34 as the same as 2|1|34 since only adjacent singletons can commute.
		

Crossrefs

Corresponds to a subset of elements counted in A000670.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0, 1/p!, add(
          b(n-j, 0)*binomial(n, j)/p!, j=2..n)+b(n-1, p+1)*n)
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..21);  # Alois P. Heinz, Nov 19 2024
  • PARI
    \\ here B(n,k) is A008299 or A358623.
    B(n, k) = {sum(i=0, k, (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) ); }
    a(n)={sum(k=0, n, binomial(n,k)*sum(j=0, k\2, B(k,j)*j!*(j+1)^(n-k)))} \\ Andrew Howroyd, Sep 27 2024
    
  • PARI
    seq(n)=my(g=exp(x + O(x*x^n))); Vec(serlaplace(g/(1 - g*(g-x-1)))) \\ Andrew Howroyd, Sep 27 2024

Formula

Asymptotic growth: a(n) = n! * b^(-n) * c, where b is the unique positive root of exp(2*x) = 1 + e^x + x*e^x, and c is 0.722487... .
From Andrew Howroyd, Sep 27 2024: (Start)
a(n) = Sum_{k=0..n} Sum_{j=0..floor(k/2)} binomial(n,k)*A358623(k,j)*j!*(j+1)^(n-k).
E.g.f.: exp(x)/(1 - exp(x)*(exp(x)-x-1)). (End)
In the notation above, c = 1/(b*(2*exp(b) - b - 2)). - Vaclav Kotesovec, Nov 21 2024

Extensions

a(10) onwards from Andrew Howroyd, Sep 27 2024

A113060 a(n) = n!*Sum_{k=0..n} bell(k+1)/k!, n=0,1..., where bell(n) are the Bell numbers, cf. A000110.

Original entry on oeis.org

1, 3, 11, 48, 244, 1423, 9415, 70045, 581507, 5349538, 54173950, 600127047, 7229169001, 94170096335, 1319764307235, 19806944750672, 316993980880556, 5389579751775611, 97018268274166055
Offset: 0

Views

Author

Karol A. Penson, Oct 13 2005

Keywords

Crossrefs

Cf. A113059.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(x)-1+x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 23 2018
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Exp[Exp[x] - 1 + x]/(1 - x), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, May 23 2018 *)
    Table[n!Sum[BellB[k+1]/k!,{k,0,n}],{n,0,20}] (* Harvey P. Dale, May 03 2020 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(exp(x)-1+x)/(1-x) )) \\ G. C. Greubel, May 23 2018
    

Formula

a(n) = (-1)^n*n!*Sum_{p >=1} LaguerreL(n, -n-1, p)/(p-1)!/exp(1), n>=0.
E.g.f.: exp(exp(x)-1+x)/(1-x).
Representation as the n-th moment of a positive weight function on a positive half-axis: The weight function is a piecewise continuous function which is a weighted infinite sum of shifted exponential distributions, in Maple notation: a(n)=int(x^n*sum(exp(p-x)*Heaviside(x-p)/(p-1)!, p=1..infinity))/(exp(1)), n=0, 1...
a(n) ~ exp(exp(1)) * n!. - Vaclav Kotesovec, Jun 26 2022
Showing 1-2 of 2 results.