A113166 a(n) = Sum_{d|n} A000010(n/d) * A000045(d-1).
0, 1, 1, 3, 3, 8, 8, 17, 23, 41, 55, 102, 144, 247, 387, 631, 987, 1636, 2584, 4233, 6787, 11011, 17711, 28794, 46380, 75181, 121441, 196685, 317811, 514712, 832040, 1346921, 2178429, 3525581, 5702937, 9229314, 14930352, 24160419, 39088469, 63250315, 102334155
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2000 (first 50 terms from Max Alekseyev)
- Creighton Dement and Max Alekseyev, Notes on A113166
Programs
-
MATLAB
function [res] = calcA113166(n) d=divisors(n); res=0; for i=1:length(d) res=res+eulerPhi(n/d(i))*fibonacci(d(i)-1); end end % Maxim Karimov, Aug 21 2021
-
Maple
with(numtheory): with(combinat): a:= n-> add(phi(d)*fibonacci(n/d-1), d=divisors(n)): seq(a(n), n=1..50); # Alois P. Heinz, Aug 21 2021
-
Mathematica
a[n_] := Sum[EulerPhi[d]*Fibonacci[n/d - 1], {d, Divisors[n]}]; Array[a, 50] (* Jean-François Alcover, Jan 03 2022 *)
-
PARI
A113166(n) = sum(k=1,n\2, k/(n-k) * sum(j=1,gcd(n,k), binomial((n-k)*gcd([n,k,j])/gcd(n,k),k*gcd([n,k,j])/gcd(n,k)) ))
Formula
a(n) = Sum_{k=1..floor(n/2)} (k/(n-k))*Sum_{j=1..gcd(n,k)} binomial((n-k)*gcd(n,k,j)/gcd(n,k), k*gcd(n,k,j)/gcd(n,k)) (Alekseyev).
a(p) = Fibonacci(p-1) for all primes p. (Creighton Dement and Antti Karttunen, proved by Max Alekseyev).
a(n) = Sum_{d|n} phi(n/d)*Fibonacci(d-1), where phi=A000010. - Maxim Karimov and Vladislav Sulima, Aug 20 2021
Extensions
More terms from Max Alekseyev, Jun 20 2006
Better name using given formula from Joerg Arndt, Mar 11 2025
Comments