A113175 Replace each prime p in prime-factorization of n with p-th Fibonacci number.
1, 1, 2, 1, 5, 2, 13, 1, 4, 5, 89, 2, 233, 13, 10, 1, 1597, 4, 4181, 5, 26, 89, 28657, 2, 25, 233, 8, 13, 514229, 10, 1346269, 1, 178, 1597, 65, 4, 24157817, 4181, 466, 5, 165580141, 26, 433494437, 89, 20, 28657, 2971215073, 2, 169, 25, 3194, 233
Offset: 1
Examples
63 = 3^2 * 7^1. So a(63) = F(3)^2 * F(7)^1 = 4 * 13 = 52.
Links
- Danny Rorabaugh, Table of n, a(n) for n = 1..4000
Programs
-
Maple
a:= n-> mul(combinat[fibonacci](i[1])^i[2], i=ifactors(n)[2]): seq(a(n), n=1..52); # Alois P. Heinz, Jan 14 2025
-
Mathematica
Times@@@Table[Fibonacci[#[[1]]]^#[[2]]&/@FactorInteger[n],{n,60}] (* Harvey P. Dale, Mar 30 2024 *)
-
Sage
[1]+[prod([fibonacci(x[0])^x[1] for x in factor(n)]) for n in range(2,53)] # Danny Rorabaugh, Apr 03 2015
Formula
Totally multiplicative with a(p) = F(p). - Franklin T. Adams-Watters, Jun 05 2006
Extensions
More terms from Esa Peuha (esa.peuha(AT)helsinki.fi), Oct 26 2005
Previous Mathematica program deleted by Harvey P. Dale, Mar 30 2024
Comments