A113213 Smallest number m such that 2^n - m and 2^n + m are primes.
0, 1, 3, 3, 9, 3, 21, 15, 9, 15, 21, 3, 45, 135, 75, 15, 99, 93, 99, 315, 105, 105, 15, 75, 339, 117, 261, 183, 351, 453, 1281, 267, 675, 867, 819, 117, 69, 2343, 1995, 1005, 2949, 165, 741, 603, 315, 1287, 1629, 243, 519, 765, 165, 1233, 741, 1797, 339, 177
Offset: 1
Keywords
Examples
a(1)=0 because 2^1 +/- 0 are primes; a(2)=1 because 2^2 -/+ 1 are primes; a(33)=675 because 2^33 +/- 675 are closest (to each other) primes.
Links
- P. Poplin, Table of n, a(n) for n = 0..10000 (Terms after 8025 correspond to Fermat and Lucas PRP.)
Programs
-
Mathematica
f[n_]:=Module[{a=2^n,i=1},While[!PrimeQ[a+i]||!PrimeQ[a-i],i++];i]; Join[{0},Rest[Array[f,80]]] (* Harvey P. Dale, Apr 25 2011 *)
-
PARI
a(n) = my(m=0); while(!(isprime(2^n+m) && isprime(2^n-m)), m++); m; \\ Michel Marcus, Apr 20 2015
Comments