A113225 a(2n) = A011900(n), a(2n+1) = A001109(n+1).
1, 1, 3, 6, 15, 35, 85, 204, 493, 1189, 2871, 6930, 16731, 40391, 97513, 235416, 568345, 1372105, 3312555, 7997214, 19306983, 46611179, 112529341, 271669860, 655869061, 1583407981, 3822685023, 9228778026, 22280241075, 53789260175
Offset: 0
References
- C. Dement, Floretion Integer Sequences (work in progress).
Links
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See p. 19.
- Eric Weisstein's World of Mathematics, Edge Cover Number.
- Eric Weisstein's World of Mathematics, Edge Cut.
- Eric Weisstein's World of Mathematics, Independence Number.
- Eric Weisstein's World of Mathematics, Lovasz Number.
- Eric Weisstein's World of Mathematics, Pell Graph.
- Eric Weisstein's World of Mathematics, Shannon Capacity.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-1).
Programs
-
Maple
seq(iquo(fibonacci(n,2),1)-iquo(fibonacci(n,2),2),n=1..30); # Zerinvary Lajos, Apr 20 2008 with(combinat):seq(ceil(fibonacci(n,2)/2), n=1..30); # Zerinvary Lajos, Jan 12 2009
-
Mathematica
Ceiling[Fibonacci[Range[20], 2]/2] Table[(1 + (-1)^n + 2 Fibonacci[n + 1, 2])/4, {n, 0, 20}] // Expand CoefficientList[Series[-(-1 + x + x^2)/(1 - 2 x - 2 x^2 + 2 x^3 + x^4), {x, 0, 20}], x] LinearRecurrence[{2, 2, -2, -1}, {1, 1, 3, 6}, 20]
-
PARI
{a(n)=local(y); if(n<0, 0, n++; y=x/(x^2+x-1)+x*O(x^n); polcoeff( y/(y^2-1), n))} /* Michael Somos, Sep 09 2006 */
Formula
G.f.: y/(y^2-1) where y=x/(x^2+x-1) if offset=1. - Michael Somos, Sep 09 2006
G.f.: (-1+x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)).
Diagonal sums of A119468. - Paul Barry, May 21 2006
a(n) = (1 + (-1)^n + 2 A000129(n+1))/4. - Eric W. Weisstein, Aug 01 2023
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4). - Eric W. Weisstein, Aug 01 2023
Comments