cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A122848 Exponential Riordan array (1, x(1+x/2)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 0, 15, 10, 1, 0, 0, 0, 15, 45, 15, 1, 0, 0, 0, 0, 105, 105, 21, 1, 0, 0, 0, 0, 105, 420, 210, 28, 1, 0, 0, 0, 0, 0, 945, 1260, 378, 36, 1, 0, 0, 0, 0, 0, 945, 4725, 3150, 630, 45, 1, 0, 0, 0, 0, 0, 0, 10395, 17325, 6930, 990, 55, 1, 0, 0
Offset: 0

Views

Author

Paul Barry, Sep 14 2006

Keywords

Comments

Entries are Bessel polynomial coefficients. Row sums are A000085. Diagonal sums are A122849. Inverse is A122850. Product of A007318 and A122848 gives A100862.
T(n,k) is the number of self-inverse permutations of {1,2,...,n} having exactly k cycles. - Geoffrey Critzer, May 08 2012
Bessel numbers of the second kind. For relations to the Hermite polynomials and the Catalan (A033184 and A009766) and Fibonacci (A011973, A098925, and A092865) matrices, see Yang and Qiao. - Tom Copeland, Dec 18 2013.
Also the inverse Bell transform of the double factorial of odd numbers Product_{k= 0..n-1} (2*k+1) (A001147). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins:
    1
    0    1
    0    1    1
    0    0    3    1
    0    0    3    6    1
    0    0    0   15   10    1
    0    0    0   15   45   15    1
    0    0    0    0  105  105   21    1
    0    0    0    0  105  420  210   28    1
    0    0    0    0    0  945 1260  378   36    1
From _Gus Wiseman_, Jan 12 2021: (Start)
As noted above, a(n) is the number of set partitions of {1..n} into k singletons or pairs. This is also the number of set partitions of subsets of {1..n} into n - k pairs. In the first case, row n = 5 counts the following set partitions:
  {{1},{2,3},{4,5}}  {{1},{2},{3},{4,5}}  {{1},{2},{3},{4},{5}}
  {{1,2},{3},{4,5}}  {{1},{2},{3,4},{5}}
  {{1,2},{3,4},{5}}  {{1},{2,3},{4},{5}}
  {{1,2},{3,5},{4}}  {{1,2},{3},{4},{5}}
  {{1},{2,4},{3,5}}  {{1},{2},{3,5},{4}}
  {{1},{2,5},{3,4}}  {{1},{2,4},{3},{5}}
  {{1,3},{2},{4,5}}  {{1},{2,5},{3},{4}}
  {{1,3},{2,4},{5}}  {{1,3},{2},{4},{5}}
  {{1,3},{2,5},{4}}  {{1,4},{2},{3},{5}}
  {{1,4},{2},{3,5}}  {{1,5},{2},{3},{4}}
  {{1,4},{2,3},{5}}
  {{1,4},{2,5},{3}}
  {{1,5},{2},{3,4}}
  {{1,5},{2,3},{4}}
  {{1,5},{2,4},{3}}
In the second case, we have:
  {{1,2},{3,4}}  {{1,2}}  {}
  {{1,2},{3,5}}  {{1,3}}
  {{1,2},{4,5}}  {{1,4}}
  {{1,3},{2,4}}  {{1,5}}
  {{1,3},{2,5}}  {{2,3}}
  {{1,3},{4,5}}  {{2,4}}
  {{1,4},{2,3}}  {{2,5}}
  {{1,4},{2,5}}  {{3,4}}
  {{1,4},{3,5}}  {{3,5}}
  {{1,5},{2,3}}  {{4,5}}
  {{1,5},{2,4}}
  {{1,5},{3,4}}
  {{2,3},{4,5}}
  {{2,4},{3,5}}
  {{2,5},{3,4}}
(End)
		

Crossrefs

Row sums are A000085.
Column sums are A001515.
Same as A049403 but with a first column k = 0.
The same set partitions counted by number of pairs are A100861.
Reversing rows gives A111924 (without column k = 0).
A047884 counts standard Young tableaux by size and greatest row length.
A238123 counts standard Young tableaux by size and least row length.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs.
A339742 counts factorizations into distinct primes or squarefree semiprimes.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n<2,1,0), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); Table[ t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
    (* Second program: *)
    rows = 12;
    t = Join[{1, 1}, Table[0, rows]];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 23 2018,after Peter Luschny *)
    sbs[{}]:={{}};sbs[set:{i_,_}]:=Join@@Function[s,(Prepend[#1,s]&)/@sbs[Complement[set,s]]]/@Cases[Subsets[set],{i}|{i,_}];
    Table[Length[Select[sbs[Range[n]],Length[#]==k&]],{n,0,6},{k,0,n}] (* Gus Wiseman, Jan 12 2021 *)
  • PARI
    {T(n,k)=if(2*kn, 0, n!/(2*k-n)!/(n-k)!*2^(k-n))} /* Michael Somos, Oct 03 2006 */
    
  • Sage
    # uses[inverse_bell_transform from A265605]
    multifact_2_1 = lambda n: prod(2*k + 1 for k in (0..n-1))
    inverse_bell_matrix(multifact_2_1, 9) # Peter Luschny, Dec 31 2015

Formula

Number triangle T(n,k) = k!*C(n,k)/((2k-n)!*2^(n-k)).
T(n,k) = A001498(k,n-k). - Michael Somos, Oct 03 2006
E.g.f.: exp(y(x+x^2/2)). - Geoffrey Critzer, May 08 2012
Triangle equals the matrix product A008275*A039755. Equivalently, the n-th row polynomial R(n,x) is given by the Type B Dobinski formula R(n,x) = exp(-x/2)*Sum_{k>=0} P(n,2*k+1)*(x/2)^k/k!, where P(n,x) = x*(x-1)*...*(x-n+1) denotes the falling factorial polynomial. Cf. A113278. - Peter Bala, Jun 23 2014
From Daniel Checa, Aug 28 2022: (Start)
E.g.f. for the m-th column: (x^2/2+x)^m/m!.
T(n,k) = T(n-1,k-1) + (n-1)*T(n-2,k-1) for n>1 and k=1..n, T(0,0) = 1. (End)

A132382 Lower triangular array T(n,k) generator for group of arrays related to A001147 and A102625.

Original entry on oeis.org

1, -1, 1, -1, -2, 1, -3, -3, -3, 1, -15, -12, -6, -4, 1, -105, -75, -30, -10, -5, 1, -945, -630, -225, -60, -15, -6, 1, -10395, -6615, -2205, -525, -105, -21, -7, 1, -135135, -83160, -26460, -5880, -1050, -168, -28, -8, 1, -2027025, -1216215, -374220, -79380, -13230, -1890, -252, -36, -9, 1
Offset: 0

Views

Author

Tom Copeland, Nov 11 2007, Nov 12 2007, Nov 19 2007, Dec 04 2007, Dec 06 2007

Keywords

Comments

Let b(n) = LPT[ A001147 ] = -A001147(n-1) for n > 0 and 1 for n=0, where LPT represents the action of the list partition transform described in A133314.
Then T(n,k) = binomial(n,k) * b(n-k) .
Form the matrix of polynomials TB(n,k,t) = T(n,k) * t^(n-k) = binomial(n,k) * b(n-k) * t^(n-k) = binomial(n,k) * Pb(n-k,t),
beginning as
1;
-1, 1;
-1*t, -2, 1;
-3*t^2, -3*t, -3, 1;
-15*t^3, -12*t^2, -6*t, -4, 1;
-105*t^4, -75*t^3, -30*t^2, -10*t, -5, 1;
Let Pc(n,t) = LPT(Pb(.,t)).
Then [TB(t)]^(-1) = TC(t) = [ binomial(n,k) * Pc(n-k,t) ] = LPT(TB),
whose first column is
Pc(0,t) = 1
Pc(1,t) = 1
Pc(2,t) = 2 + t
Pc(3,t) = 6 + 6*t + 3*t^2
Pc(4,t) = 24 + 36*t + 30*t^2 + 15*t^3
Pc(5,t) = 120 + 240*t + 270*t^2 + 210*t^3 + 105*t^4.
The coefficients of these polynomials are given by the reverse of A102625 with the highest order coefficients given by A001147 with an additional leading 1.
Note this is not the complete matrix TC. The complete matrix is formed by multiplying along the diagonal of the lower triangular Pascal matrix by these polynomials, embedding trees of coefficients in the matrix.
exp[Pb(.,t)*x] = 1 + [(1-2t*x)^(1/2) - 1] / (t-0) = [1 + a finite diff. of [(1-2t*x)^(1/2)] with step t] = e.g.f. of the first column of TB.
exp[Pc(.,t)*x] = 1 / { 1 + [(1-2t*x)^(1/2) - 1] / t } = 1 / exp[Pb(.,t)*x) = e.g.f. of the first column of TC.
TB(t) and TC(t), being inverse to each other, are the generators of an Abelian group.
TB(0) and TC(0) are generators for a subgroup representing the iterated Laguerre operator described in A132013 and A132014.
Let sb(t,m) and sc(t,m) be the associated sequences under the LPT to TB(t)^m = B(t,m) and TC(t)^m = C(t,m).
Let Esb(t,m) and Esc(t,m) be e.g.f.'s for sb(t,m) and sc(t,m), rB(t,m) and rC(t,m) be the row sums of B(t,m) and C(t,m) and aB(t,m) and aC(t,m) be the alternating row sums.
Then B(t,m) is the inverse of C(t,m), Esb(t,m) is the reciprocal of Esc(t,m) and sb(t,m) and sc(t,m) form a reciprocal pair under the LPT. Similar relations hold among the row sums and the alternating sign row sums and associated quantities.
All the group members have the form B(t,m) * C(u,p) = TB(t)^m * TC(u)^p = [ binomial(n,k) * s(n-k) ]
with associated e.g.f. Es(x) = exp[m * Pb(.,t) * x] * exp[p * Pc(.,u) * x] for the first column of the matrix, with terms s(n), so group multiplication is isomorphic to matrix multiplication and to multiplication of the e.g.f.'s for the associated sequences (see examples).
These results can be extended to other groups of integer-valued arrays by replacing the 2 by any natural number in the expression for exp[Pb(.,t)*x].
More generally,
[ G.f. for M = Product_{i=0..j} B[s(i),m(i)] * C[t(i),n(i)] ]
= exp(u*x) * Product_{i=0..j} { exp[m(i) * Pb(.,s(i)) * x] * exp[n(i) * Pc(.,t(i)) * x] }
= exp(u*x) * Product_{i=0..j} { 1 + [ (1 - 2*s(i)*x)^(1/2) - 1 ] / s(i) }^m(i) / { 1 + [ (1 - 2*t(i)*x)^(1/2) - 1 ] / t(i) }^n(i)
= exp(u*x) * H(x)
[ E.g.f. for M ] = I_o[2*(u*x)^(1/2)] * H(x).
M is an integer-valued matrix for m(i) and n(i) positive integers and s(i) and t(i) integers. To invert M, change B to C in Product for M.
H(x) is the e.g.f. for the first column of M and diagonally multiplying the Pascal matrix by the terms of this column generates M. See examples.
The G.f. for M, i.e., the e.g.f. for the row polynomials of M, implies that the row polynomials form an Appell sequence (see Wikipedia and Mathworld). - Tom Copeland, Dec 03 2013

Examples

			Some group members and associated arrays are
(t,m) :: Array :: Asc. Matrix :: Asc. Sequence :: E.g.f. for sequence
..............................................................................
(0,1).::.B..::..A132013.::.(1,-1,0,0,0,0,...).....::.s(x).=.1-x
(0,1).::.C..::..A094587.::.(0!,1!,2!,3!,...)......::.1./.s(x)
(0,1).::.rB.::.~A055137.::.(1,0,-1,-2,-3,-4,...)..::.exp(x).*.s(x)
(0,1).::.rC.::....-.....::..A000522...............::.exp(x)./.s(x)
(0,1).::.aB.::....-.....::.(1,-2,3,-4,5,-6,...)...::.exp(-x).*.s(x)
(0,1).::.aC.::..A008290.::..A000166...............::.exp(-x)./.s(x)
..............................................................................
(0,2).::.B..::..A132014.::.(1,-2,2,0,0,0,0...)....::.s(x).=.(1-x)^2
(0,2).::.C..::..A132159.::.(1!,2!,3!,4!,...)......::..1./.s(x).
(0,2).::.rB.::...-......::.(1,-1,-1,1,5,11,19,29,)::.exp(x).*.s(x).
(0,2).::.rC.::...-......::..A001339...............::.exp(x)./.s(x).
(0,2).::.aB.::...-......::.(-1)^n.A002061(n+1)....::.exp(-x).*.s(x).
(0,2).::.aC.::...-......::..A000255...............::.exp(-x)./.s(x).
..............................................................................
(1,1).::.B..::..T.......::.(1,-A001147(n-1))......::.s(x).=.(1-2x)^(1/2)
(1,1).::.C..::.~A113278.::..A001147...............::.1./.s(x)...
(1,1).::.rB.::...-......::..A055142...............::.exp(x).*.s(x).
(1,1).::.rC.::...-......::..A084262...............::.exp(x)./.s(x).
(1,1).::.aB.::...-......::.(1,-2,2,-4,-4,-56,...).::.exp(-x).*.s(x).
(1,1).::.aC.::...-......::..A053871...............::.exp(-x)./.s(x).
..............................................................................
(2,1).::.B..::...-......::.(1,-A001813)...........::.s=[1+(1-4x)^(1/2)]/2....
(2,1).::.C..::...-......::..A001761...............::.1./.s(x)..
(2,1).::.rB.::...-......::.(1,0,-3,-20,-183,...)..::.exp(x).*.s(x)..
(2,1).::.rC.::...-......::.(1,2,7,46,485,...).....::.exp(x)./.s(x).
(2,1).::.aB.::...-......::.(1,-2,1,-10,-79,...)...::.exp(-x).*.s(x).
(2,1).::.aC.::...-......::.(1,0,3,20,237,...).....::.exp(-x)./.s(x)
..............................................................................
(1,2).::.B..::.~A134082.::.(1,-2,0,0,0,0,...).....::.s(x).=.1.-.2x
(1,2).::.C..::....-.....::..A000165...............::.1./.s(x)..
(1,2).::.rB.::....-.....::.(1,-1,-3,-5,-7,-9,...).::.exp(x).*.s(x).
(1,2).::.rC.::....-.....::..A010844...............::.exp(x)./.s(x)..
(1,2).::.aB.::....-.....::.(1,-3,5,-7,9,-11,...)..::.exp(-x).*.s(x).
(1,2).::.aC.::....-.....::..A000354...............::.exp(-x)./.s(x).
..............................................................................
(The tilde indicates the match is not exact--specifically, there are differences in signs from the true matrices.)
Note the row sums correspond to binomial transforms of s(x) and the alternating row sums, to inverse binomial transforms, or, finite differences.
Some additional examples:
C(1,2)*B(0,1) = B(1,-2)*C(0,-1) = [ binomial(n,k)*A002866(n-k) ] with asc. e.g.f. (1-x) / (1-2x).
B(1,2)*C(0,1) = C(1,-2)*B(0,-1) = 2I - A094587 with asc. e.g.f. (1-2x) / (1-x).
		

Formula

[G.f. for TB(n,k,t)] = GTB(u,x,t) = exp(u*x) * { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t } = exp[(u+Pb(.,t))*x] where TB(n,k,t) = (D_x)^n (D_u)^k /k! GTB(u,x,t) eval. at u=x=0.
[G.f. for TC(n,k,t)] = GTC(u,x,t) = exp(u*x) / { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t } = exp[(u+Pc(.,t))*x] where TC(n,k,t) = (D_x)^n (D_u)^k /k! GTC(u,x,t) eval. at u=x=0.
[E.g.f. for TB(n,k,t)] = I_o[2*(u*x)^(1/2)] * { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t } and
[E.g.f. for TC(n,k,t)] = I_o[2*(u*x)^(1/2)] / { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t }
where I_o is the zeroth modified Bessel function of the first kind, i.e.,
I_o[2*(u*x)^(1/2)] = Sum_{j>=0} (u^j/j!) * (x^j/j!).
So [e.g.f. for TB(n,k)] = I_o[2*(u*x)^(1/2)] * (1 - 2x)^(1/2).

Extensions

More terms from Tom Copeland, Dec 05 2007

A176230 Exponential Riordan array [1/sqrt(1-2x), x/(1-2x)].

Original entry on oeis.org

1, 1, 1, 3, 6, 1, 15, 45, 15, 1, 105, 420, 210, 28, 1, 945, 4725, 3150, 630, 45, 1, 10395, 62370, 51975, 13860, 1485, 66, 1, 135135, 945945, 945945, 315315, 45045, 3003, 91, 1, 2027025, 16216200, 18918900, 7567560, 1351350, 120120, 5460, 120, 1, 34459425
Offset: 0

Views

Author

Paul Barry, Apr 12 2010

Keywords

Comments

Row sums are A066223. Reverse of A119743. Inverse is alternating sign version.
Diagonal sums are essentially A025164.
From Tom Copeland, Dec 13 2015: (Start)
See A099174 for relations to the Hermite polynomials and the link for operator relations, including the infinitesimal generator containing A000384.
Row polynomials are 2^n n! Lag(n,-x/2,-1/2), where Lag(n,x,q) is the associated Laguerre polynomial of order q.
The triangles of Bessel numbers entries A122848, A049403, A096713, A104556 contain these polynomials as even or odd rows. Also the aerated version A099174 and A066325. Reversed, these entries are A100861, A144299, A111924.
Divided along the diagonals by the initial element (A001147) of the diagonal, this matrix becomes the even rows of A034839.
(End)
The first few rows appear in expansions related to the Dedekind eta function on pp. 537-538 of the Chan et al. link. - Tom Copeland, Dec 14 2016

Examples

			Triangle begins
        1,
        1,        1,
        3,        6,        1,
       15,       45,       15,       1,
      105,      420,      210,      28,       1,
      945,     4725,     3150,     630,      45,      1,
    10395,    62370,    51975,   13860,    1485,     66,    1,
   135135,   945945,   945945,  315315,   45045,   3003,   91,   1,
  2027025, 16216200, 18918900, 7567560, 1351350, 120120, 5460, 120, 1
Production matrix is
  1,  1,
  2,  5,  1,
  0, 12,  9,  1,
  0,  0, 30, 13,  1,
  0,  0,  0, 56, 17,   1,
  0,  0,  0,  0, 90,  21,   1,
  0,  0,  0,  0,  0, 132,  25,   1,
  0,  0,  0,  0,  0,   0, 182,  29,  1,
  0,  0,  0,  0,  0,   0,   0, 240, 33, 1.
		

Crossrefs

Programs

  • Maple
    ser := n -> series(KummerU(-n, 1/2, x), x, n+1):
    seq(seq((-2)^(n-k)*coeff(ser(n), x, k), k=0..n), n=0..8); # Peter Luschny, Jan 18 2020
  • Mathematica
    t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); u[n_, k_] := t[2 n, k + n]; Table[ u[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jan 14 2011 *)

Formula

Number triangle T(n,k) = (2n)!/((2k)!(n-k)!2^(n-k)).
T(n,k) = A122848(2n,k+n). - R. J. Mathar, Jan 14 2011
[x^(1/2)(1+2D)]^2 p(n,x)= p(n+1,x) and [D/(1+2D)]p(n,x)= n p(n-1,x) for the row polynomials of T, with D=d/dx. - Tom Copeland, Dec 26 2012
E.g.f.: exp[t*x/(1-2x)]/(1-2x)^(1/2). - Tom Copeland , Dec 10 2013
The n-th row polynomial R(n,x) is given by the type B Dobinski formula R(n,x) = exp(-x/2)*Sum_{k>=0} (2*k+1)*(2*k+3)*...*(2*k+1+2*(n-1))*(x/2)^k/k!. Cf. A113278. - Peter Bala, Jun 23 2014
The raising operator in my 2012 formula expanded is R = [x^(1/2)(1+2D)]^2 = 1 + x + (2 + 4x) D + 4x D^2, which in matrix form acting on an o.g.f. (formal power series) is the transpose of the production array below. The linear term x is the diagonal of ones after transposition. The main diagonal comes from (1 + 4xD) x^n = (1 + 4n) x^n. The last diagonal comes from (2 D + 4 x D^2) x^n = (2 + 4 xD) D x^n = n * (2 + 4(n-1)) x^(n-1). - Tom Copeland, Dec 13 2015
T(n, k) = (-2)^(n-k)*[x^k] KummerU(-n, 1/2, x). - Peter Luschny, Jan 18 2020

A154557 Production array of A122848, read by row.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, -1, 2, 1, 0, 3, -3, 3, 1, 0, -15, 12, -6, 4, 1, 0, 105, -75, 30, -10, 5, 1, 0, -945, 630, -225, 60, -15, 6, 1, 0, 10395, -6615, 2205, -525, 105, -21, 7, 1, 0, -135135, 83160, -26460, 5880, -1050, 168, -28, 8, 1, 0, 2027025, -1216215, 374220, -79380
Offset: 0

Views

Author

Paul Barry, Jan 11 2009

Keywords

Examples

			Array starts
  0, 1,
  0, 1, 1,
  0, -1, 2, 1,
  0, 3, -3, 3, 1,
  0, -15, 12, -6, 4, 1,
  0, 105, -75, 30, -10, 5, 1,
  0, -945, 630, -225, 60, -15, 6, 1,
  0, 10395, -6615, 2205, -525, 105, -21, 7, 1,
  0, -135135, 83160, -26460, 5880, -1050, 168, -28, 8, 1
  0, 2027025, -1216215, 374220, -79380, 13230, -1890, 252, -36, 9, 1
Square of this array is
  0, 1, 1,
  0, 0, 3, 1,
  0, 0, 0, 5, 1,
  0, 0, 0, 0, 7, 1,
  0, 0, 0, 0, 0, 9, 1,
  0, 0, 0, 0, 0, 0, 11, 1,
  0, 0, 0, 0, 0, 0, 0, 13, 1,
  0, 0, 0, 0, 0, 0, 0, 0, 15, 1,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 1
		

Crossrefs

Showing 1-4 of 4 results.