cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A114529 Let S(n)=sigma(|n|)/2-n; sequence gives numbers n such that S(S(S(S(n))))=n. May be called {1,2}-sociable number of orders 1 or 2 or 4.

Original entry on oeis.org

41, 929, 1301, 30240, 32760, 260609, 1441440, 1860768, 2178540, 3205440, 3378240, 3423420, 3914820, 4029480, 4437720, 5738040, 6093360, 6807240, 7136640, 7239120, 7551360, 9402120, 10204740, 12270720, 12405120, 12942720, 13495680, 14627340, 14725620
Offset: 1

Views

Author

Yasutoshi Kohmoto, Feb 15 2006

Keywords

Crossrefs

Extensions

a(7)-a(29) from Charles R Greathouse IV, Nov 12 2010.

A075701 a(1)=1, a(n+1)=sigma(a(n))-2*a(n).

Original entry on oeis.org

1, -1, 3, -2, 7, -6, 24, 12, 4, -1, 3, -2, 7, -6, 24, 12, 4, -1, 3, -2, 7, -6, 24, 12, 4, -1, 3, -2, 7, -6, 24, 12, 4, -1, 3, -2, 7, -6, 24, 12, 4, -1, 3, -2, 7, -6, 24, 12, 4, -1, 3, -2, 7, -6, 24, 12, 4, -1, 3, -2, 7, -6, 24, 12, 4, -1, 3, -2, 7, -6, 24, 12, 4, -1, 3, -2, 7, -6, 24, 12, 4, -1, 3, -2, 7, -6, 24, 12, 4, -1, 3, -2, 7, -6
Offset: 1

Views

Author

Benoit Cloitre, Oct 02 2002

Keywords

Comments

Taking any nonperfect number as initial value, does the map x->sigma(x)-2x lead to the cycle (-1,3,-2,7,-6,24,12,4) if during the iteration no perfect number is reached? Example: 124 -> -24 -> 108 -> 64 -> -1 -> 3 -> -2 -> 7 -> -6 -> 24 -> 12 -> 4 and the cycle (-1,3,-2,7,-6,24,12,4) is reached.
There appear to be lots of other cycles, for example the numbers in A005820 are cycles of length one. For longer cycles refer to the discussion in links. - Hans Havermann, Jul 21 2013

Crossrefs

Programs

  • Mathematica
    NestList[DivisorSigma[1, #]-2#&, 1, 94]  (* Peter Luschny, Jul 17 2013 *)
    Join[{1},LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{-1, 3, -2, 7, -6, 24, 12, 4},93]] (* Ray Chandler, Aug 25 2015 *)

Formula

Periodic with period (-1, 3, -2, 7, -6, 24, 12, 4) of length 8.

A114528 Let S(n)=sigma(|n|)-3*n; sequence gives numbers n such that S(S(S(S(n))))=n. May be called {3,1}-Sociable number of orders 1 or 2 or 4.

Original entry on oeis.org

1248, 1596, 28272, 30240, 32760, 463296, 678032, 1906128, 2178540, 4694328, 4697616, 4698072, 11110976, 12865770, 23569920, 30998250, 31235904, 37501072, 45532800, 63723600, 76980288, 95801088, 142990848, 146078592, 163032720, 614533696, 1044244800, 1379454720
Offset: 1

Views

Author

Yasutoshi Kohmoto, Feb 15 2006

Keywords

Crossrefs

Cf. A113285, A114529. Contains A069146 as a subsequence.

Programs

Extensions

a(5)-a(12) from Charles R Greathouse IV, Jan 20 2010
a(13)-a(28) from Donovan Johnson, Jan 16 2012

A371921 The number of iterations of the map x -> A033880(x) starting at n until the a nonpositive number is reached, or 0 if this does not happen.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Apr 12 2024

Keywords

Comments

Analogous to A098007 with A033880(n) = sigma(n) - 2*n instead of A001065(n) = sigma(n) - n.

Examples

			a(n) = 0 if the iterations that start at n are entering a cycle. Examples of cycles are:
  1) Cycles of length 1: the triperfect numbers (A005820), 120, 672, 523776, ..., which are the fixed points of A033880. The triperfect numbers can be reached from other values of n, e.g., 276, 448, 486, 510, 702, ... .
  2) Cycles of length 2: the only known cycle is (45840, 51168) (see A069085). It can be reached from other values of n, e.g., 32130, 39420, 45480, 66300, ... .
  3) Cycles of length 3: the least cycle is (243732672, 271303776, 256786848). It is first reached from n = 107689320.
  4) Cycles of length 4: the least cycle is (65071776, 82842816, 89761152, 77260656). It can be reached from other values of n, e.g., 33623940, 41132280, 42825888, ... . The next cycle of length 4 is (985948800, 1381340160, 2183133696, 1489384608).
		

Crossrefs

Programs

  • Mathematica
    ab[n_] := Module[{k}, If[n < 1, 0, k = DivisorSigma[1, n] - 2*n; If[k < 1, 0, k]]]; a[n_] := Module[{s = NestWhileList[ab, n, UnsameQ, All]}, If[s[[-1]] == 0, Length[s] - 2, 0]]; Array[a, 120]
  • PARI
    ab(n) = {my(k); if(n < 1, 0, k = sigma(n) - 2*n; if(k < 1, 0, k));}
    a(n) = {my(t = 0); until(bittest(t, n = ab(n)), t += 1<M. F. Hasler at A098007

Formula

a(n) = 1 if and only if n is nonabundant (A263837).
If a(n) > 0 then:
a(n) > 1 if n is abundant (A005101).
a(n) > 2 if n is in A371920.
Showing 1-4 of 4 results.