A162020 Positive k such that there is at least one partition into parts {14, 52, 78, 133, 248} (terms of A113907).
14, 28, 42, 52, 56, 66, 70, 78, 80, 84, 92, 94, 98, 104, 106, 108, 112, 118, 120, 122, 126, 130, 132, 133, 134, 136, 140, 144, 146, 147, 148, 150, 154, 156, 158, 160, 161, 162, 164, 168, 170, 172, 174, 175, 176, 178, 182, 184, 185, 186, 188, 189, 190, 192, 196, 198, 199, 200, 202, 203, 204, 206, 208, 210, 211, 212
Offset: 1
Links
- Wikipedia, Coin problem.
Crossrefs
Cf. A113907.
Programs
-
Maple
L := [14,52,78,133,248] ; # check whether n is a linear combination of op(..,L) with # some nonnegative a,b,c,d,e frob := proc(n,L) local a,b,c,d,e,nres ; for a from 0 do if a*op(1,L) > n then break; fi; for b from 0 do if a*op(1,L)+b*op(2,L) > n then break; fi; for c from 0 do if a*op(1,L)+b*op(2,L)+c*op(3,L) > n then break; fi; for d from 0 do if a*op(1,L)+b*op(2,L)+c*op(3,L)+d*op(4,L) > n then break; fi; nres := n-a*op(1,L)-b*op(2,L)-c*op(3,L)-d*op(4,L) ; if nres < 0 then break; fi; if nres = 0 then RETURN([a,b,c,d,0]) ; fi; if ( nres mod op(5,L) ) = 0 then RETURN([a,b,c,d,nres/op(5,L)]) ; fi; od: od; od: od: RETURN([]) ; end: for n from 14 to 200 do f := frob(n,L) ; if f <> [] then print(n,f) ; fi; od: Extended and b-file by R. J. Mathar.
-
Mathematica
ok[n_] := Reduce[a >= 0 && b >= 0 && c >= 0 && d >= 0 && e >= 0 && 14a + 52b + 78c + 133d + 248e == n, {a, b, c, d, e}, Integers] =!= False; Select[Range[196], ok] (* Jean-François Alcover, Sep 06 2011 *)
Extensions
Better name from Joerg Arndt, May 23 2021
Comments