cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A205969 a(n) = Fibonacci(n)*A113973(n) for n>=1, with a(0)=1, where A113973 lists the coefficients in phi(x^3)^3/phi(x) and phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 4, -4, 6, 0, 32, -52, 84, -68, 0, 0, 288, -932, 3016, 0, 1974, 0, 10336, -16724, 0, -43784, 0, 0, 185472, -150050, 971144, -392836, 1271244, 0, 0, -5385076, 8713236, 0, 0, 0, 29860704, -96631268, 312705352, -252983944, 0, 0, 2143314368, -1733977748, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Compare g.f. to the Lambert series of A113973: 1 - 2*Sum_{n>=1} Kronecker(n,3)*x^n/(1 - (-x)^n).

Examples

			G.f.: A(x) = 1 - 2*x + 4*x^2 - 4*x^3 + 6*x^4 + 32*x^6 - 52*x^7 + 84*x^8 +...
where A(x) = 1 - 1*2*x + 1*4*x^2 - 2*2*x^3 + 3*2*x^4 + 8*4*x^6 - 13*4*x^7 + 21*4*x^8 +...+ Fibonacci(n)*A113973(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 - 2*( 1*x/(1+x-x^2) - 1*x^2/(1-3*x^2+x^4) + 3*x^4/(1-7*x^4+x^8) - 5*x^5/(1+11*x^5-x^10) + 13*x^7/(1+29*x^7-x^14) - 21*x^8/(1-47*x^8+x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
		

Crossrefs

Cf. A209449 (Pell variant).

Programs

  • Mathematica
    A113973:= CoefficientList[Series[EllipticTheta[3, q^3]^3/EllipticTheta[3, 0, q], {q, 0, 75}], q]; Table[If[n == 1, 1, Fibonacci[n-1]*A113973[[n]] ], {n, 1, 50}] (* G. C. Greubel, Jul 17 2018 *)
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1 - 2*sum(m=1,n,fibonacci(m)*kronecker(m,3)*x^m/(1-Lucas(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,60,print1(a(n),", "))

Formula

G.f.: 1 - 2*Sum_{n>=1} Fibonacci(n)*Kronecker(n,3)*x^n/(1 - Lucas(n)*(-x)^n + (-1)^n*x^(2*n)).

A209449 a(n) = Pell(n)*A113973(n) for n>=1, with a(0)=1, where A113973 lists the coefficients in phi(x^3)^3/phi(x) and phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 8, -10, 24, 0, 280, -676, 1632, -1970, 0, 0, 27720, -133844, 646256, 0, 941664, 0, 10976840, -26500436, 0, -154455860, 0, 0, 2173358880, -2623476242, 25334527696, -15290740090, 73830224208, 0, 0, -1038870091396, 2508054264192, 0, 0, 0, 42600007379160
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A113973:
1 - 2*Sum_{n>=1} Kronecker(n,3)*x^n/(1 - (-x)^n).

Examples

			G.f.: A(x) = 1 - 2*x + 8*x^2 - 10*x^3 + 24*x^4 + 280*x^6 - 676*x^7 +...
where A(x) = 1 - 1*2*x + 2*4*x^2 - 5*2*x^3 + 12*2*x^4 + 70*4*x^6 - 169*4*x^7 + 408*4*x^8 +...+ Pell(n)*A113973(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 - 2*( 1*x/(1+2*x-x^2) - 2*x^2/(1-6*x^2+x^4) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1+82*x^5-x^10) + 169*x^7/(1+478*x^7-x^14) - 408*x^8/(1-1154*x^8+x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A113973:= CoefficientList[Series[EllipticTheta[3, 0, q^3]^3 /EllipticTheta[3, 0, q], {q, 0, 60}], q]; Table[If[n == 0, 1, Fibonacci[n, 2]*A113973[[n + 1]]], {n, 0, 50}] (* G. C. Greubel, Dec 03 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 - 2*sum(m=1,n,Pell(m)*kronecker(m,3)*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,60,print1(a(n),", "))

Formula

G.f.: 1 - 2*Sum_{n>=1} Pell(n)*Kronecker(n,3)*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A164617 Expansion of (phi^3(q^3) / phi(q)) * (psi(-q^3) / psi^3(-q)) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 4, 10, 20, 39, 76, 140, 244, 415, 696, 1140, 1820, 2861, 4448, 6816, 10292, 15372, 22756, 33356, 48408, 69683, 99600, 141312, 199036, 278557, 387608, 536230, 737632, 1009464, 1374888, 1863764, 2514868, 3378948, 4521672, 6027000, 8002676
Offset: 0

Views

Author

Michael Somos, Aug 17 2009

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q + 4*q^2 + 10*q^3 + 20*q^4 + 39*q^5 + 76*q^6 + 140*q^7 + 244*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1-x^(6*k))^14 / ((1-x^k) * (1-x^(2*k))^2 * (1-x^(3*k))^5 * (1-x^(4*k)) * (1-x^(12*k))^5),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^14 / (eta(x + A) * eta(x^2 + A)^2 * eta(x^3 + A)^5 * eta(x^4 + A) * eta(x^12 + A)^5), n))};

Formula

Expansion of eta(q^6)^14 / (eta(q) * eta(q^2)^2 * eta(q^3)^5 * eta(q^4) * eta(q^12)^5) in powers of q.
Euler transform of period 12 sequence [ 1, 3, 6, 4, 1, -6, 1, 4, 6, 3, 1, 0, ...].
Convolution of A113973 and A132974. a(n) = A164616(3*n).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(9/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
A128641(n) = (-1)^n*a(n). - Michael Somos, Apr 24 2023

A123330 Expansion of eta(q^2) * eta(q^3)^6 / (eta(q)^2 * eta(q^6)^3) in powers of q.

Original entry on oeis.org

1, 2, 4, 2, 2, 0, 4, 4, 4, 2, 0, 0, 2, 4, 8, 0, 2, 0, 4, 4, 0, 4, 0, 0, 4, 2, 8, 2, 4, 0, 0, 4, 4, 0, 0, 0, 2, 4, 8, 4, 0, 0, 8, 4, 0, 0, 0, 0, 2, 6, 4, 0, 4, 0, 4, 0, 8, 4, 0, 0, 0, 4, 8, 4, 2, 0, 0, 4, 0, 0, 0, 0, 4, 4, 8, 2, 4, 0, 8, 4, 0, 2, 0, 0, 4, 0, 8, 0, 0, 0, 0, 8, 0, 4, 0, 0, 4, 4, 12, 0, 2, 0, 0, 4, 8
Offset: 0

Views

Author

Michael Somos, Sep 26 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 4*q^2 + 2*q^3 + 2*q^4 + 4*q^6 + 4*q^7 + 4*q^8 + 2*q^9 + ... - _Michael Somos_, Aug 11 2009
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]*(QP[q^3]^6/(QP[q]^2*QP[q^6]^3)) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, -(-1)^d * kronecker( -3, d)))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^6 / (eta(x + A)^2 * eta(x^6 + A)^3), n))}
    
  • Sage
    A = ModularForms( Gamma1(6), 1, prec=90).basis(); A[0] + 2*A[1] # Michael Somos, Sep 27 2013

Formula

Expansion of c(q)^2 / (3 * c(q^2)) in powers of q where c() is a cubic AGM theta function.
Expansion of phi(-x^3)^3 / phi(-x) where phi() is a Ramanujan theta function.
a(n) = 2*b(n) where b(n) is multiplicative and b(2^e) = (1 - 3*(-1)^e) / 2 if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
Euler transform of period 6 sequence [ 2, 1, -4, 1, 2, -2, ...].
Moebius transform is period 6 sequence [ 2, 2, 0, -2, -2, 0, ...].
a(n) = 2 * A123331(n) if n>0. (-1)^n * a(n) = A113973(n).
G.f.: Product_{k>0} (1 + x^k)/(1 - x^k) * ((1 - x^(3*k)) / (1 + x^(3*k)))^3.
G.f.: 1 + 2 * Sum_{k>0} x^k / (1 - x^k + x^(2*k)) = theta_3(-x^3)^3 / theta_3(-x).
From Michael Somos, Aug 11 2009: (Start)
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v * (u - v)^2 - 2 * u * w * (v - w).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (16/3)^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A107760.
a(4*n) = a(3*n) = a(n). a(12*n + 10) = a(6*n + 5) = 0.
a(2*n + 1) = 2 * A033762(n). a(3*n + 1) = 2 * A033687(n). a(4*n + 1) = 2 * A112604(n). a(4*n + 3) = 2 * A112605(n). a(6*n + 1) = 2 * A097195(n). a(12*n + 1) = A123884(n). a(12*n + 7) = 4 * A121361(n). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/(3*sqrt(3)) = 2.418399... (A275486). - Amiram Eldar, Nov 14 2023

A113660 Expansion of phi(x)^3 / phi(x^3) where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 6, 12, 6, -6, 0, 12, 12, 12, 6, 0, 0, -6, 12, 24, 0, -6, 0, 12, 12, 0, 12, 0, 0, 12, 6, 24, 6, -12, 0, 0, 12, 12, 0, 0, 0, -6, 12, 24, 12, 0, 0, 24, 12, 0, 0, 0, 0, -6, 18, 12, 0, -12, 0, 12, 0, 24, 12, 0, 0, 0, 12, 24, 12, -6, 0, 0, 12, 0, 0, 0, 0, 12, 12
Offset: 0

Views

Author

Michael Somos, Nov 03 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 6*q + 12*q^2 + 6*q^3 - 6*q^4 + 12*q^6 + 12*q^7 + 12*q^8 + 6*q^9 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 227, Entry 4(iv).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 74); A[1] + 6*A[2] + 12*A[3] + 6*A[4] - 6*A[5]; /* Michael Somos, May 20 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^3 / EllipticTheta[ 3, 0, q^3], {q, 0, n}]; (* Michael Somos, May 20 2015 *)
  • PARI
    {a(n) = my(x); if( n<1, n==0, x = valuation(n, 2); if( n%2, 2, (1 - 3*(-1)^x))*3 * sumdiv(n/2^x, d, kronecker(-3, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 6*prod(k=1,matsize(A)[1], [p, e] = A[k,]; if( p==2, (1 - 3*(-1)^e) / 2, p==3, 1, p%6==1, e+1, !(e%2))))};
    
  • PARI
    {a(n) = if( n<1, n==0, 6 * direuler(p=2, n, if( p==2, 2 - (1 - 2*X) / (1 - X^2), 1 / ((1 - X) * (1 - kronecker(-3, p) * X))))[n])};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^15 * eta(x^3 + A)^2 * eta(x^12 + A)^2 / (eta(x + A)^6 * eta(x^4 + A)^6 * eta(x^6 + A)^5), n))};
    

Formula

Expansion of a(q) + 2*q(q^2) - 2*a(q^4) = b(-q)^2 / b(q^2) = (b(q) - 2*b(q^4))^2 / b(q^2) = (c(q) + 2*c(q^4))^2 / (3 * c(q^2)) in powers of q where a(), b(), c() are cubic AGM functions. - Michael Somos, May 20 2015
Expansion of (eta(q^2)^15 * eta(q^3)^2 * eta(q^12)^2) / (eta(q)^6 * eta(q^4)^6 * eta(q^6)^5) in powers of q.
a(n) = 6*b(n) where b(n) is multiplicative with a(0) = 1, b(2^e) = (1 - 3(-1)^e) / 2 if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
Euler transform of period 12 sequence [ 6, -9, 4, -3, 6, -6, 6, -3, 4, -9, 6, -2, ...].
Moebius transform is period 12 sequence [ 6, 6, 0, -18, -6, 0, 6, 18, 0, -6, -6, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 108^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113973. - Michael Somos, May 20 2015
G.f.: 1 + 6 * ( Sum_{k>0} x^k / (1 + x^k + x^(2*k)) + 2*x^(4*k - 2) / (1 + x^(4*k - 2) + x^(8*k - 4)) ).
a(n) = 6 * A113661(n), if n>0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi*sqrt(3) = 5.441398... (A304656). - Amiram Eldar, Dec 25 2023

Extensions

Corrected by Charles R Greathouse IV, Sep 02 2009

A113974 Expansion of (1-phi(x^3)^3/phi(x))/2 where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 1, -1, 0, -2, 2, -2, 1, 0, 0, -1, 2, -4, 0, -1, 0, -2, 2, 0, 2, 0, 0, -2, 1, -4, 1, -2, 0, 0, 2, -2, 0, 0, 0, -1, 2, -4, 2, 0, 0, -4, 2, 0, 0, 0, 0, -1, 3, -2, 0, -2, 0, -2, 0, -4, 2, 0, 0, 0, 2, -4, 2, -1, 0, 0, 2, 0, 0, 0, 0, -2, 2, -4, 1, -2, 0, -4, 2, 0, 1, 0, 0, -2, 0, -4, 0, 0, 0, 0, 4, 0, 2, 0, 0, -2, 2, -6, 0, -1, 0, 0, 2, -4, 0
Offset: 1

Views

Author

Michael Somos, Nov 10 2005

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, 1985, see p. 375, Entry 35.

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[(1 - EllipticTheta[3, 0, q^3]^3/EllipticTheta[ 3, 0, q])/2, {q, 0, n}]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Dec 16 2017 *)
    f[p_, e_] := If[Mod[p, 6] == 1, e + 1, (1 + (-1)^e)/2]; f[2, e_] := ((-1)^e - 3)/2; f[3, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 14 2023 *)
  • PARI
    {a(n)=local(x); if(n<1, 0, x=valuation(n,2); if(n%2,1,(-3+(-1)^x)/2)*sumdiv(n/2^x,d, kronecker(-3,d)))}
    
  • PARI
    {a(n)=local(A,p,e); if(n<1, 0, A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==2, (-3+(-1)^e)/2, if(p==3, 1, if(p%6==1, e+1, !(e%2)))))))}
    
  • PARI
    {a(n)=if(n<1, 0, direuler(p=2,n, if(p==2, 2-(1+2*X)/(1-X^2), 1/(1-X)/(1-kronecker(-3,p)*X)))[n])}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=sum(k=1,sqrtint(n), 2*x^k^2, 1+x*O(x^n)); polcoeff( (1-subst(A+x*O(x^(n\3)),x,x^3)^3/A)/2, n))}

Formula

a(n) is multiplicative and a(2^e) = ((-1)^e-3)/2, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6). [corrected by Amiram Eldar, Nov 14 2023]
Moebius transform is period 12 sequence [1, -3, 0, 1, -1, 0, 1, -1, 0, 3, -1, 0, ...].
G.f.: (1-theta_3(q^3)^3/theta_3(q))/2.
G.f.: Sum_{k>0} x^(3k-2)/(1-(-x)^(3k-2)) - x^(3k-1)/(1-(-x)^(3k-1)) = Sum_{k>0} -(-1)^k x^k/(1+x^k+x^(2k)) -2 x^(4k)/(1+x^(4k)+x^(8k)).
-2*a(n) = A113973(n), if n>0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = -Pi/(6*sqrt(3)) = -0.302299... . - Amiram Eldar, Nov 14 2023

A226132 Expansion of - c(-q) * c(q^2) / 9 in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

1, -1, 3, -1, 6, -3, 8, -1, 9, -6, 12, -3, 14, -8, 18, -1, 18, -9, 20, -6, 24, -12, 24, -3, 31, -14, 27, -8, 30, -18, 32, -1, 36, -18, 48, -9, 38, -20, 42, -6, 42, -24, 44, -12, 54, -24, 48, -3, 57, -31, 54, -14, 54, -27, 72, -8, 60, -30, 60, -18, 62, -32, 72
Offset: 1

Views

Author

Michael Somos, May 27 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 91 of the 126 eta-quotients listed in Table 1 of Williams 2012.

Examples

			G.f. = q - q^2 + 3*q^3 - q^4 + 6*q^5 - 3*q^6 + 8*q^7 - q^8 + 9*q^9 - 6*q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ If[ OddQ[d] && ! Divisible[ n/d, 3], -d (-1)^(n/d), 0], {d, Divisors[ n]}]];
    a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (Which[ # == 2, -1, # == 3, #^#2, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger[n])];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3]^3 / EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, I q^(3/2)]^3 / EllipticTheta[ 2, 0, I q^(1/2)] / (4 (-1)^(1/4)), {q, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, if(d%2 && (n/d)%3, -d * (-1)^(n/d))))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k= 1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, -1, if( p==3, p^e, (p^(e+1) - 1) / (p - 1))))))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^12 / (eta(x^2 + A)^4 * eta(x^3 + A)^3 * eta(x^12 + A)^3), n))};

Formula

Expansion of (a(q) - a(q^2)) * (a(q^2) + 2 * a(q^4)) / 18 = c(q^2)^4 / (9 * c(q) * c(q^4)) = (b(-q) * b(q^2) - a(-q) * a(q^2)) / 9 in powers of q where a(), b(), c(q) are cubic AGM theta functions.
Expansion of q * (phi(q^3)^3 / phi(q)) * (ps(-q^3)^3 / psi(-q)) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^4) * eta(q^6)^12 / (eta(q^2)^4 * eta(q^3)^3 * eta(q^12)^3) in powers of q.
Euler transform of period 12 sequence [ -1, 3, 2, 2, -1, -6, -1, 2, 2, 3, -1, -4, ...].
Multiplicative with a(2^e) = -1 if e>0, a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 4/3 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A226139.
G.f.: Sum_{k>0 not 3|k} x^k / (1 - (-x)^k)^2 = Sum_{k>0 not 2|k} k * x^k * (1 - x^k) / (1 + x^(3*k)).
G.f.: x * Product_{k>0} (1 - x^k) * (1 - x^(4*k)) * (1 - x^(3*k))^6 * (1 + x^(3*k))^9 / ((1 - x^(2*k))^4 * (1 + x^(6*k))^3).
a(2*n) = - A121443(n). a(2*n + 1) = A185717(n).
a(n) = -(-1)^n * A121443(n). Convolution of A113447 and A113973.
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 - 1/2^(s-1))^2 * (1 - 1/3^s) * zeta(s-1) * zeta(s).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/54 = 0.18277045... . (End)

A119428 G.f.: A(x) = 1 + Sum_{n>=0} (-1)^n* Sum_{k=1..4} x^(5n+k)/(1-x^(5n+k)).

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 2, 0, 2, 1, 2, 2, 4, 2, 2, 2, 1, 0, 0, 0, 3, 2, 4, 2, 4, 1, 2, 0, 2, 0, 2, 2, 2, 4, 2, 0, 1, 0, 0, 2, 2, 2, 4, 2, 6, 1, 2, 0, 2, -1, 2, 2, 4, 2, 0, 2, 0, 0, 0, 0, 4, 2, 4, 2, 3, 2, 4, 0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 4, 2, 6, 0, 2, 0, 4, 0, 0, 2, 4, 4, 2, 0, 2, 0, 0, 2, 3, 2, 4, 2, 4, 2, 2, 0, 0, 0, 4, 2, 0, 2, 0, 2, 0, 0, 0, -2, 4, 3, 4, 4, 6, 1, 2
Offset: 0

Views

Author

Paul D. Hanna, May 19 2006

Keywords

Comments

Records are A003586 (numbers of the form 2^i*3^j) = [1,2,3,4,6,8,9,12...], occurring at positions: [0,2,4,12,44,132,484,924,4092,...].

Examples

			A(x) = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + x^5 + 2*x^6 + 2*x^8 + x^9 +...
= 1 + x/(1-x) + x^2/(1-x^2) + x^3/(1-x^3) + x^4/(1-x^4) +
- x^6/(1-x^6) - x^7/(1-x^7) - x^8/(1-x^8) - x^9/(1-x^9) +
+ x^11/(1-x^11) + x^12/(1-x^12) + x^13/(1-x^13) + x^14/(1-x^14) +...
		

Crossrefs

Cf. A113973.

Programs

  • Mathematica
    A119428[n_] := SeriesCoefficient[(QPochhammer[q^5,q^5])^2/(QPochhammer[q, q^10]*QPochhammer[q^2, q^10]*QPochhammer[q^8, q^10]*QPochhammer[q^9, q^10]), {q, 0, n}]; Table[A119428[n], {n, 0, 50}] (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    {a(n)=polcoeff(1+sum(k=0,n\5+1,(-1)^k*sum(j=1,4,x^(5*k+j)/(1-x^(5*k+j)+x*O(x^n))) ),n)}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k+ x*O(x^n))^[2,-1,-1,0,0,2,0,0,-1,-1][k%10 + 1]), n))} /* Michael Somos, Mar 08 2008 */

Formula

a(5n) = a(n); a(10n+2) = 2*a(5n+1).
Convolution identity: Sum_{k=0..n} a(5(n-k))*a(5k+3) = Sum_{k=0..n} a(5(n-k)+1)*a(5k+2).
Euler transform of period 10 sequence: [1,1,0,0,-2,0,0,1,1,-2]; also,
Moebius transform of period 10 sequence: [1,1,1,1,0,-1,-1,-1,-1,0].
Expansion of (f(-q^5) * f(-q^10))^2 / (f(-q, -q^9) * f(-q^2, -q^8)) in powers of q where f() is Ramanujan's two-variable theta function. - Michael Somos, Mar 08 2008
G.f.: Product_{k>0} (1 - x^(5*k))^2 / ( (1-x^(10*k-1)) * (1-x^(10*k-2)) * (1-x^(10*k-8)) * (1-x^(10*k-9)) ). - Michael Somos, Mar 08 2008
G.f.: 1 + Sum_{k>0} (x^k + x^(2*k) + x^(3*k) + x^(4*k)) / (1 + x^(5*k)). - Michael Somos, Mar 08 2008
If A = A0 + A1 + A2 + A3 + A4 is the 5-section, then A0 * A3 = A1 * A2, A0 * A2 + A3 * A4 = 2 * A1^2. - Michael Somos, Mar 08 2008

A321466 Expansion of (phi(x^3)^3 / phi(x))^2 in powers of x where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -4, 12, -20, 28, -24, 28, -32, 60, -68, 72, -48, 44, -56, 96, -120, 124, -72, 76, -80, 168, -160, 144, -96, 76, -124, 168, -212, 224, -120, 168, -128, 252, -240, 216, -192, 92, -152, 240, -280, 360, -168, 224, -176, 336, -408, 288, -192, 140, -228, 372
Offset: 0

Views

Author

Michael Somos, Nov 11 2018

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
The g.f. of A113973 is k = k(q) := phi(x^3)^3 / phi(x) given in equation (2.2) page 996 of Williams 2012, and the g.f. of k^2 which is given in equation (2.3) page 997 is this sequence.
Number 54 of the 126 eta-quotients listed in Table 1 of Williams 2012.

Examples

			G.f. = 1 - 4*x + 12*x^2 - 20*x^3 + 28*x^4 - 24*x^5 + 28*x^6 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(12), 2), 51); A[1] - 4*A[2] + 12*A[3] - 20*A[4] + 28*A[5];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^3]^6 / EllipticTheta[ 3, 0, x]^2, {x, 0, n}];
    a[ n_] := With[{s = If[ FractionalPart @ # > 0, 0, DivisorSigma[1, #]] &}, If[ n < 1, Boole[n == 0], -4 (s[n] - 6 s[n/2] + s[n/3] + 4 s[n/4] + 2 s[n/6] + 4 s[n/12])]];
  • PARI
    {a(n) = my(s = x -> if(frac(x), 0, sigma(x))); if( n<1, n==0, -4*(s(n) - 6*s(n/2) + s(n/3) + 4*s(n/4) + 2*s(n/6) + 4*s(n/12)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A)^15 / (eta(x^2 + A)^5 * eta(x^3 + A)^6 * eta(x^12 + A)^6))^2, n))};
    

Formula

Expansion of (eta(q)^2 * eta(q^4)^2 * eta(q^6)^15 / (eta(q^2)^5 * eta(q^3)^6 * eta(q^12)^6))^2 in powers of q.
Expansion of ((a(x) - 2*a(x^2) - 2*a(x^4))/3)^2 = ((b(x) + 2*b(x^4))^2 / (9*b(x^2)))^2 in powers of x where a(), b() are cubic AGM theta functions.
Euler transform of period 12 sequence [-4, 6, 8, 2, -4, -12, -4, 2, 8, 6, -4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (4/3) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A321465.
G.f.: (theta_3(0, x^3)^3 / theta_3(0, x))^2 where theta_3(0, x) is a Jacobi theta function.
G.f.: (Product_{k>0} f(x^k))^2 where f(x) := ((1 - x) * (1 + x^2))^2 * ((1 - x^3) * (1 + x^3)^3)^3 / ((1 - x^2) * (1 + x^6)^2)^3.
a(n) = -4*(s(n) - 6*s(n/2) + s(n/3) + 4*s(n/4) + 2*s(n/6) + 4*s(n/12)) if n>0 where s(x) = sum of divisors of x for integer x else 0.
a(n) = (-1)^n * A227226(n). Convolution square of A113973.
Showing 1-9 of 9 results.