cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114021 Number of semiprimes between n and n + sqrt(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 1, 2, 3, 3, 3, 3, 3, 2, 2, 2, 1, 0, 1, 1, 1, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 3, 3, 2, 1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
Offset: 0

Views

Author

Jonathan Vos Post, Jan 31 2006

Keywords

Comments

It appears that for n > 37 it is always true that a(n) > 0. The exponent can be reduced further. Since 597 + 597^(0.4129) > 611, leaping the record semiprime gap between 597 and 611, it seems that for n > 597 it is always true that there is a semiprime between n and n^(0.4129). It seems that for n > 2705 it is always true that there is a semiprime between n and n^(0.3509). These conjectures are related to the various sequences about semiprime gaps and the merit of such gaps.
a(96) appears to be the last zero term. - T. D. Noe, Aug 12 2008

Examples

			a(0) = 0 because there are no semiprimes between 0 and 0+sqrt(0) = 0.
a(2) = 0 because there are no semiprimes between 2 and 2+sqrt(2) = 3.414...
a(3) = 1 as the semiprime 4 falls between 3 and 3 + sqrt(3) = 4.732...
a(5) = 1 as the semiprime 6 falls between 5 and 5 + sqrt(5) = 7.236...
		

Crossrefs

Programs

  • Mathematica
    SemiPrimeQ[n_] := TrueQ[Plus@@Last/@FactorInteger[n]==2]; Table[hi=n+Sqrt[n]; If[IntegerQ[hi], hi--, hi=Floor[hi]]; Length[Select[Range[n+1,hi], SemiPrimeQ]], {n,0,150}] (* T. D. Noe, Aug 12 2008 *)
  • Perl
    use ntheory ":all"; print "$ ",semiprime_count($+1, $+sqrtint($)-($ && is_square($))),"\n" for 0..1000; # Dana Jacobsen, Mar 04 2019

Formula

a(n) = card{S such that S is an element of A001358 and n < S < n + n^(1/2)}.

Extensions

Corrected and extended by T. D. Noe, Aug 12 2008