A114047 x such that x^2 - 13*y^2 = 1.
1, 649, 842401, 1093435849, 1419278889601, 1842222905266249, 2391203911756701601, 3103780835237293411849, 4028705132934095091878401, 5229256158767620191964752649, 6787570465375238075075157060001, 8810261234800900253827361899128649
Offset: 0
Examples
(649^2-1)/13 = 180^2.
Links
- Colin Barker, Table of n, a(n) for n = 0..321
- Tanya Khovanova, Recursive Sequences
- John Robertson, Home page.
- Index entries for linear recurrences with constant coefficients, signature (1298,-1).
Programs
-
Magma
I:=[1,649]; [n le 2 select I[n] else 1298*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jun 14 2015
-
Mathematica
LinearRecurrence[{1298,-1},{1,649},20] (* or *) With[{c=180Sqrt[13]}, Simplify[Table[1/2((649-c)^n+(649+c)^n),{n,0,20}]]] (* Harvey P. Dale, Aug 11 2011 *)
-
PARI
/* This sequence is computed with g(1e9,13) in the following program. */ g(n,k) = for(y=0,n,x=k*y^2+1;if(issquare(x),print1(floor(sqrt(x))",")))
-
PARI
a0=1;a1=649;for(n=2,30,a2=1298*a1-a0;a0=a1;a1=a2;print1(a2,",")) \\ Benoit Cloitre
-
PARI
Vec((1-649*x)/(1-1298*x+x^2) + O(x^100)) \\ Colin Barker, Jun 13 2015
Formula
a(0)=1, a(1)=649 then a(n)=1298*a(n-1)-a(n-2). - Benoit Cloitre, Feb 03 2006
G.f.: (1-649*x)/(1-1298*x+x^2). - Philippe Deléham, Nov 18 2008
a(n) = 2*A132644(n) + 1. - Hugo Pfoertner, Feb 11 2024
Extensions
More terms from Benoit Cloitre, Feb 03 2006
Comments