cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372670 Numbers k such that k * phi(k) is a fifth power.

Original entry on oeis.org

1, 8, 256, 500, 864, 8192, 9826, 16000, 27648, 54000, 132651, 209952, 246924, 262144, 314432, 333396, 512000, 884736, 1061208, 1562500, 1728000, 6718464, 7002306, 7294032, 7901568, 8388608, 8541936, 10061824, 10668672, 13122000, 13564278, 15432750, 16384000
Offset: 1

Views

Author

Seiichi Manyama, May 10 2024

Keywords

Comments

To look for terms it suffices to see if fifth powers have a divisors pair (k, m) such that phi(m) = k. - David A. Corneth, May 21 2024

Examples

			8 * phi(8) = 32 = 2^5.
		

Crossrefs

Programs

  • PARI
    isok(n) = ispower(n*eulerphi(n), 5);

Formula

If n is in the sequence and prime p divides n, then p^5*n is in the sequence.

A358051 Squares k such that phi(k) is a cube.

Original entry on oeis.org

1, 16, 1024, 2500, 5184, 50625, 65536, 160000, 331776, 810000, 3779136, 4194304, 4691556, 5345344, 7001316, 10240000, 16867449, 20820969, 21233664, 27060804, 36905625, 39062500, 51840000, 52200625, 228765625, 241864704, 268435456, 269879184, 300259584, 333135504
Offset: 1

Views

Author

DarĂ­o Clavijo, Oct 27 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[20000]^2, IntegerQ[Surd[EulerPhi[#], 3]] &] (* Amiram Eldar, Oct 27 2022 *)
  • PARI
    isok(k) = issquare(k) && ispower(eulerphi(k), 3); \\ Michel Marcus, Oct 27 2022
  • Python
    from sympy.ntheory.factor_ import totient
    from gmpy2 import *
    def isok(k):
      if is_square(k):
        j = isqrt(k)
        a,b = iroot(totient(j) * j, 3)
        return b
    

Formula

a(n) = A114076(n)^2. - Amiram Eldar, Oct 27 2022
Showing 1-2 of 2 results.